首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a saturation analysis over a wide range of [3H]estradiol at two temperatures 4 and 22 degrees C we have determined unoccupied (4 degrees C) and total (22 degrees C) type II estrogen binding site (EBS) levels in individual cytosols of 100 patients with breast cancer (50 post and 50 premenopausal). Exchange was found to be complete after 18 h at 22 degrees C and receptor degradation was negligible during this treatment. Steroid specificity and affinity determined by Scatchard and Rosenthal plot analysis were not altered at 22 degrees C. Carcinomas presented a higher total type II REBS level as compared unfilled type II binding sites or the classical ER, independently of menopausal status, phase of the menstrual cycle or positivity of ER. On the other hand, unoccupied type II EBS level was strongly correlated to the concentration of type I ER, being higher on the post-menopausal group and older patients.  相似文献   

2.
Interaction of [3H]4-hydroxytamoxifen-charged estrogen receptor [( 3H]AER) with nuclei was compared to that of [3H]17 beta-estradiol-charged estrogen receptor [( 3H]ER) in vitro. Specificity of [3H]AER binding was demonstrated since more than 90% of [3H]AER binding was displaced by ten-fold excess estradiol-charged ER. For R3230AC tumors, the number of [3H]AER binding sites was approximately 40% lower than the number of [3H]ER binding sites. There were no differences in affinity of binding of these receptors complexes (Kd range 0.7-1.6 nM). In contrast 0.7-1.6 nM). In contrast to a reduction of [3H]ER binding after ovariectomy, no difference in the number of [3H]AER binding sites was seen among tumors from intact, ovex, or estrogen-treated ovex rats. These results suggest that [3H]AER bind to 60% of the sites that bind [3H]ER, and that neither tissue type nor host ovarian status affects the number of nuclear [3H]AER binding sites.  相似文献   

3.
We recently reported that adenine acts as a neurotrophic factor independent of adenosine or P2 receptors in cultured Purkinje cells [Watanabe S. et al. (2003) J. Neurosci. Res. 74, 754-759], suggesting the presence of specific receptors for adenine in the brain. In this study, the characterization of adenine-binding activity in the rat brain was performed to further characterize the receptor-like adenine-binding sites. Specific binding sites for [(3)H]adenine were detected in membrane fractions prepared from rat brains. The kinetics of [(3)H]adenine binding to membranes was described by the association and dissociation rate constants, 8.6 x 10(5) M(-1) min(-1) and 0.118 +/- 0.045 min(-1), respectively. A single binding site for [(3)H]adenine with a K (D) of 157.1 +/- 20.8 nM and a B (max) of 16.3 +/- 1.1 pmol/mg protein (n = 6) was demonstrated in saturation experiments. A displacement study involving various related compounds showed that the [(3)H]adenine binding was highly specific for adenine. It was also found that [(3)H]adenine-binding activity was inhibited by adenosine, although other adenosine receptor ligands were ineffective as to [(3)H]adenine binding. The brain, especially the cerebellum and spinal cord, showed the highest [(3)H]adenine-binding activity of the tissues examined. These results are consistent with the presence of a novel adenine receptor in rat brain membranes.  相似文献   

4.
The interaction of phytoestrogens with the most important binding sites of steroid hormones, i.e. sex hormone-binding globulin and estrogen receptors, was investigated. Relative binding affinities and association constants for 21 compounds among them isoflavones, flavones, flavonols, flavanones, chalcones and lignans were determined. The lignan nordihydroguaiaretic acid weakly displaced 17beta-[3H]-estradiol from estrogen receptor and Scatchard analysis suggests non-conformational changes. Compounds from Glycyrrhiza glabra, liquiritigenin and isoliquiritigenin, showed estrogenic affinities to both receptors. 18beta-Glycyrrhetinic acid displaced 17beta-[3H]-estradiol from sex hormone-binding globulin but not from the estrogen receptor. Phytoestrogens compete with 17beta-estradiol much stronger than with 5alpha-dihydrotestosterone for binding to sex hormone-binding globulin.  相似文献   

5.
6.
[(3)H](2S,4R)-4-Methylglutamate ([(3)H]4MG), used previously as a ligand for low-affinity kainate receptors, was employed to establish a binding assay for glutamate transporters (GluTs), as 4MG has also been shown to have affinity for the glial GluTs, GLT1 and GLAST. In rat brain membrane homogenates in the presence of Na(+) ions at 4 degrees C, specific binding of [(3)H]4MG was rapid and saturable (t(1/2) approximately 15 min), representing > 90% of total binding. Dissociation of [(3)H]4MG occurred in a biphasic manner, however, saturation studies and Scatchard analysis indicated a single site of binding (n(H) = 0.85) and a K(d) of 6.2 +/- 0.8 microM with a B(max) of 111.8 +/- 23.8 pmol/mg protein. Specific binding of [(3)H]4MG was Na(+)-dependent and inhibited by K(+) and HCO(3-). Pharmacological inhibition with compounds acting at GluTs revealed that Glu, D- and L-aspartate, L-serine-O-sulfate and Ltrans-pyrrolidine-2,4-dicarboxylate fully displaced specific binding. Drugs having preferential affinity for GLT1, kainate, dihydrokainate and Lthreo-3-methylglutamate, all inhibited approximately 40% of specific binding. The inhibition pattern of L-serine-O-sulfate in the presence of a saturating concentration of dihydrokainate was suggestive of [(3)H]4MG also labelling GLAST. 6-Cyano-7-nitroquinoxaline, a kainate receptor antagonist, and a range of Glu receptor agonists and antagonists failed to significantly inhibit [(3)H]4MG binding. The pharmacological profile of binding of [(3)H]4MG resembled that found for [(3)H]D-aspartate, a ligand specific for GluTs, reinforcing the hypothesis that [(3)H]4MG was labelling GluTs in this assay. Together, these data illustrate the development of an efficient, economic binding assay that is suitable for the characterization of different subtypes of GLuTs.  相似文献   

7.
Radiolabelled methyltrienolone, dihydrotestosterone and estradiol were used as ligands to identify and quantify androgen and estrogen receptors in freshly dispersed cells from the canine prostate. Soluble extracts (cytosols) were obtained from secretory and non-secretory epithelial cells separated on the basis of their density in Percoll gradients. For both cell types, as well as for the whole prostate, Scatchard plot analyses were linear and showed a single class of high affinity binding sites: Kd values of 3.6 +/- 2.2 X 10(-9) M and 3.0 +/- 1.2 X 10(-10) M were measured for the androgen and estrogen receptors, respectively. The number of binding sites for the cytosolic androgen receptor, expressed per mg of protein or per mg of DNA, was 2.4- to 6.7-fold higher in the non-secretory cells compared to the secretory cells. However, these two cell types contained a similar number of specific sites for the estrogens. The specificities of the androgen and estrogen receptors were shown to be identical for the two cell types: the binding of [3H]R1881 was strongly inhibited by unlabelled R1881, 5 alpha-androstane-3 alpha, 17 beta-diol and dihydrotestosterone, while 5 alpha-androstane-3 beta, 17 beta-diol, estradiol and estrone did not displace bound R1881. The addition of triamcinolone acetonide did not alter the binding of R1881 in extracts of either cell type or in the whole prostate. The binding of [3H]estradiol to the estrogen receptor was highly specific since a strong displacement was only observed with estradiol (83%).  相似文献   

8.
Vitamin A plays an important role in reducing infectious disease morbidity and mortality by enhancing immunity, an effect that is partly mediated by macrophages. Thus, knowing how these cells take up vitamin A is important. The results in the present study demonstrate that J774 macrophages efficiently take up chylomicron remnant retinyl esters and retinol-binding protein (retinol-RBP) bound retinol by specific and saturable mechanisms. The binding of (125)I-RBP to plasma membrane vesicles demonstrated that the macrophage receptor had a similar binding affinity, as was discovered previously for other cells. The B(max) for the macrophages was smaller than the values reported for placenta, bone marrow, and kidney, but larger than that reported for liver. The J774 cells also bound and took up [(3)H]retinol-RBP. Approximately 50 to 60% of the uptake may compete with excess unlabeled retinol-RBP and approximately 30 to 40% with excess transtyrethin. Following the uptake of [(3)H]retinol-RBP, an extensive esterification occurred: After 5 hours of incubation, 77.8 +/- 3.9% (SD; n = 3) of the cellular radioactivity was recovered as retinyl esters. The J774 cells also demonstrated saturable binding of chylomicron remnant [(3)H]retinyl esters, and a continuous uptake at 37 degrees C followed by an extensive hydrolysis of the retinyl esters. Binding could be inhibited by approximately 50% by excess unlabeled low density lipoprotein (LDL). In addition, lipoprotein lipase increased the binding of chylomicron remnant [(3)H]retinyl esters by approximately 30% and the uptake of chylomicron remnant [(3)H]retinyl ester by more than 300%. Furthermore, because sodium chlorate reduced binding with 40% and uptake with 55%, the results suggest that proteoglycans are involved in the uptake. Thus, the results suggest that both LDL receptor and LDL-related protein are involved in the uptake of chylomicron remnant [(3)H]retinyl ester in macrophages.  相似文献   

9.
Estradiol has previously been shown to suppress the response of the cellular immune system of the rat while enhancing the production of IgM antibodies. Analysis of the cytosol from rat splenocytes showed saturation of specific binding sites at concentrations of between 80 and 160 nM [3H]-estradiol with an approximate Kd of 12 nM. Competitive binding studies showed a dose-dependent decrease in the binding of [3H]-estradiol to the receptor in the presence of increasing concentrations of unlabeled estradiol. Dexamethasone, progesterone and R1881 (synthetic androgen) had no effect on the binding of [3H]-estradiol. The in vivo administration of estradiol resulted in increased nuclear binding of [3H]-estradiol as compared to vehicle treated controls. These results indicate that rat splenocytes possess specific, translocatable estrogen receptors which may be responsible for the observed modulation of the immune system.  相似文献   

10.
The site- or domain-specific immobilization of steroid receptor proteins with preserved structure and function would facilitate the identification and purification of receptor-associated regulatory components and nucleic acids. We have demonstrated previously that restricted surface regions of the estrogen receptor protein contain high affinity binding sites for immobilized Zn(II) ions. Possible conformational changes in receptor at the stationary phase immobilized metal ion interface were evaluated by monitoring alterations in the equilibrium dissociation constant (Kd) for [3H]estradiol. Soluble estrogen receptor proteins (unliganded) present in immature calf uterine cytosol were immobilized via surface-exposed Zn(II)-binding sites to beads of agarose derivatized with iminodiacetate (IDA)-Zn(II) ions. The IDA-Zn(II) bound receptor was incubated with increasing concentrations of [3H]estradiol (0.01-20 nM) in the presence and absence of unlabeled competitor (diethylstilbestrol) to determine the level of specific hormone binding. Steroid-binding experiments were performed in parallel with identical aliquots of soluble receptor. Analyses of the equilibrium binding data revealed the presence of a single class of high-affinity (Kd = 2.44 +/- 1.5 nM, n = 10) steroid-binding sites which were only marginally affected by receptor immobilization via surface-exposed Zn(II) bindings sites (Kd = 2.58 +/- 0.56 nM, n = 4). These data are consistent with the location of surface accessible Zn(II) binding site(s) on the receptor at or near the DNA binding domain which, upon occupancy, do not influence the steroid binding domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The specific bindings of [3H]flunitrazepam [( 3H]FLU), [3H]CGS 8216, and t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) to sites on rat cerebellar granule cells all increase from 4 to 15 days in culture, although their time courses differ. Specific [3H]FLU binding doubles, [3H]CGS 8216 binding triples, and [35S]TBPS binding increases about fourfold from 4 to 15 days in culture. Displacement studies, using the type I-selective ligand CL 218,872, indicate that at 4 days the [3H]FLU binding sites are almost entirely "type II," judging from an IC50 value near 300 nM and a pseudo-Hill number near 1. By 10 days, approximately equal numbers of type I and type II binding sites are present in the cultured cells, and this ratio remains constant thereafter (12 and 15 days). At days 10-15, both the IC50 value for CL 218,872 (near 100 nM) and the pseudo-Hill number (near 0.7) remain constant and are significantly different from the values at culture day 4. The development of specific [35S]TBPS binding parallels that of [3H]CGS 8216 binding more closely than the development of [3H]FLU binding. The [3H]CGS 8216/[3H]FLU ratio increased by a factor of 1.6 from day 4 to day 15 (p less than 0.001). Taken together, our data suggest the existence of several gamma-aminobutyric acidA (GABAA) receptor subunits, the relative proportions of which change during development. The presence of the GABA-mimetic 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridine-3-ol (THIP) in the culture medium had no apparent effect on any of the binding sites studied, although THIP was shown previously to induce low-affinity GABA binding sites.  相似文献   

12.
We have examined the binding of the adenosine agonist radioligands [3H]cyclohexyladenosine [( 3H]CHA), R-N6-[3H]phenylisopropyladenosine [( 3H]R-PIA), and 5'-N-ethylcarboxamido[3H]adenosine [( 3H]NECA) to membranes prepared from rat pineal gland. The results showed that the A-1-selective ligands (CHA and R-PIA) had less than or equal to 10% specific binding. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 72% specific binding of the total binding. This specific binding was insensitive to cyclopentyladenosine (50 nM) or R-PIA (50 microM). To characterize this binding, we used the N-ethylmaleimide pretreatment method. Under these conditions, this binding was of high affinity with a KD of 51 +/- 10 nM and an apparent Bmax of 1,060 +/- 239 fmol/mg of protein. Specific binding was unaffected by the presence of MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM) (-25%), a result suggesting the involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. The rank of activity of adenosine analogues in displacing specific [3H]NECA binding was NECA greater than 2-chloroadenosine greater than S-adenosyl-L-homocysteine greater than CHA. Binding was also displaced by 3-isobutyl-1-methylxanthine (IC50 = 23.6 microM). These findings are consistent with the selective labeling by [3H]NECA of an A-2-type adenosine receptor in rat pineal membranes.  相似文献   

13.
Molecular size of the 5-HT3 receptor solubilized from NCB 20 cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
The 5-HT3 hydroxytryptamine receptor from NCB 20 cells was solubilized and the molecular and hydrodynamic properties of the receptor were investigated. The receptor was identified by binding of the radioligand 3-NN'-[3H]dimethyl-8-azabicyclo[3.2.1]octanyl indol-3-yl carboxylate ester [( 3H]Q ICS 205-930) to NCB 20 membranes (Bmax = 1.19 +/- 0.31 pmol/mg of protein; Kd = 0.43 +/- 0.076 nM) and was optimally solubilized with 0.5% deoxycholate. [3H]Q ICS 205-930 labelled one population of sites in solution (Bmax = 1.11 +/- 0.4 pmol/mg of protein; Kd = 0.48 +/- 0.06 nM; n = 4). The characteristics of [3H]Q ICS 205-930 binding were essentially unchanged by solubilization, and competition for [3H]Q ICS 205-930 binding by a series of 5-HT3 agonists and antagonists was consistent with binding to a 5-HT3 receptor site and was similar to that observed for 5-HT3 receptors solubilized from rat brain [McKernan, Quirk, Jackson & Ragan (1990) J. Neurochem. 54, 924-930]. Some physical properties of the solubilized receptor were investigated. The molecular size (Stokes radius) of the [3H]Q ICS 205-930-binding site was measured by gel-exclusion chromatography in a buffer containing 0.2% Lubrol and 0.5 M-NaCl and was determined as 4.81 +/- 0.15 nm (mean +/- S.E.M.; n = 6). Sucrose-density-gradient centrifugation was also performed under the same detergent and salt conditions to determine the partial specific volume (v) of the detergent-receptor site complex. This was found to be 0.794 ml.g-1. Sucrose-density-gradient centrifugation was carried out in both 1H2O and 2H2O to allow correction for detergent binding to the receptor. The Mr of the 5-HT3 receptor under these conditions was calculated as 249,000 +/- 18,000 (n = 3). The size and physical properties of the 5-HT3 receptor are similar to those observed for members of the family of ligand-gated ion channels.  相似文献   

14.
Solubilization of an Adenosine Uptake Site in Brain   总被引:1,自引:1,他引:0  
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state.  相似文献   

15.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

16.
[(3)H]8-OH-DPAT is a selective ligand for labeling 5-HT(1A) receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [(3)H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [(125)I]RTI-55 and [(3)H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [(3)H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [(3)H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [(125)I]cyanopindolol, [(3)H]ketanserin/[(3)H]mesulergine, [(3)H]GR-65630, [(3)H]GR-113808 and [(3)H]LSD) that specifically labeled 5-HT(1), 5-HT(2), 5-HT(3), 5-HT(4) and 5-HT(5-7) receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

17.
Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66) and the truncated isoforms, estrogen receptor-α46 (ER46) and estrogen receptor-α36 (ER36). However, the binding affinities of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [3H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.  相似文献   

18.
D2-dopamine (3,4-dihydroxyphenylethylamine) receptors were successfully solubilized with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate from an estrone-induced rat pituitary adenoma. Forty-five percent of initial protein and 48% of initial [3H]spiroperidol binding sites were solubilized. The high affinity as well as the stereoselectivity of the sites was preserved. The order of potency of dopaminergic agonists was found to be typical of D2 receptors. Target size analysis by radiation inactivation indicated a molecular weight of 143,000 +/- 3,000 and of 106,000 +/- 4,000 daltons for membrane-bound and solubilized receptors, respectively. This suggests the loss of a 37,000-dalton subunit during solubilization without significant modification of binding characteristics. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of receptor protein preparation photolabeled with N-(p-azido-m[125I]iodophenethyl)spiroperidol confirmed the existence of a 94,000-dalton peptide which probably constitutes the ligand binding site of the receptor. Thus, our data indicate that chronic estrogen treatment of rats, although inducing a pituitary adenoma, does not modify the pharmacological characteristics of D2 receptors. These data suggest therefore that these adenoma may represent an ideal source of material for further biochemical characterization of D2 receptors.  相似文献   

19.
20.
Pretlow L  Williams R  Elliott M 《Chirality》2003,15(8):674-679
A high-affinity ligand for the type II estrogen binding site (EBS) was identified. Methyl para-hydroxyphenyllactate (MeHPLA) was observed to suppress the cellular proliferation of estrogen-sensitive MCF-7 breast cancer cells in vitro and to suppress the growth of rat uteri in vivo. The high affinity of MeHPLA for the type II EBS suggests that this interaction is responsible for the observed suppression of cell growth. In this study, the enantiomers of MeHPLA were synthesized and separated by three methods and evaluated for biological activity. When the methods were compared, it was found that the method using an optically pure amine to form the diastereomers of the enantiomers gave the superior yield. Binding studies for the enantiomers to the type II EBS showed that the S-MeHPLA had a higher affinity for the binding site. However, higher binding affinity did not translate into superior cell growth suppression. Both enantiomers suppressed cell growth equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号