首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The cultures of rabbit chondrocytes embedded in collagen gels were conducted to investigate the cell behaviors and consequent architectures of cell aggregation in an early culture phase. The chondrocyte cells seeded at 1.0 x 10(5) cells/cm(3) underwent a transition to spindle-shaped morphology, and formed the loose aggregates with a starburst shape by means of possible migration and gathering. These aggregates accompanied the poor production of collagen type II, while the cells seeded at 1.6 x 10(6) cells/cm(3) exhibited active proliferation to form the dense aggregates rich in collagen type II. Stereoscopic observation was performed at 5 days to define the migrating cells in terms of a morphology-relating parameter of sphericity determined for individual cells in the gels. The frequency of migrating cells decreased with increasing seeding density, while the frequency of dividing cells showed the counter trend. The culture seeded at 1.0 x 10(5) cells/cm(3) gave the migrating cell frequency of 0.25, the value of which was 25 times higher than that at 1.6 x 10(6) cells/cm(3). In addition, the analysis of mRNA expression revealed that the chondrocyte cells seeded at 1.0 x 10(5) cells/cm(3) showed appreciable down-regulation in collagen type II relating to differentiation and up-regulation in matrix metalloproteinases relating to migration, as compared to the cells seeded at 1.6 x 10(6) cells/cm(3). These data supports the morphological analyses concerning the cell migration and aggregate formation in the cultures with varied seeding densities. It is concluded that the seeding density is an important factor to affect the cell behaviors and architecture of aggregates and thereby to modulate the quality of cultured cartilage.  相似文献   

2.
The effect of insulin-like growth factor-1 (IGF-1) on the behavior of rabbit chondrocytes in cultured collagen (CL) gels initially seeded with 2 × 105 cells/ml was examined. On day 5, the frequency of migrating cells cultured in presence of 100 ng IGF-1/ml was 0.04, which was 54 % of the frequency in IGF-1-free culture. The presence of IGF-1 caused an increase in the frequency of dividing cells from 0.09 to 0.13. These results suggest that IGF-1 suppressed the migration of chondrocytes in the CL gels while stimulating cell division in the initial culture phase. The proteolytic migration of cells was thought to be suppressed by the down-regulation of membrane type 1 matrix metalloproteinase by IGF-1. This contributed to the formation of aggregates with spherical-shaped cells that produced collagen type II.  相似文献   

3.
Human meniscus cells have a predominantly fibrogenic pattern of gene expression, but like chondrocytes they proliferate in monolayer culture and lose the expression of type II collagen. We have investigated the potential of human meniscus cells, which were expanded with or without fibroblast growth factor 2 (FGF2), to produce matrix in three-dimensional cell aggregate cultures with a chondrogenic medium at low (5%) and normal (20%) oxygen tension. The presence of FGF2 during the expansion of meniscus cells enhanced the re-expression of type II collagen 200-fold in subsequent three-dimensional cell aggregate cultures. This was increased further (400-fold) by culture in 5% oxygen. Cell aggregates of FGF2-expanded meniscus cells accumulated more proteoglycan (total glycosaminoglycan) over 14 days and deposited a collagen II-rich matrix. The gene expression of matrix-associated proteoglycans (biglycan and fibromodulin) was also increased by FGF2 and hypoxia. Meniscus cells after expansion in monolayer can therefore respond to chondrogenic signals, and this is enhanced by FGF2 during expansion and low oxygen tension during aggregate cultures.  相似文献   

4.
Components of the extracellular matrix are believed to guide both nerve cells and neurites to their targets during embryogenesis and, therefore, might be useful for controlling regeneration of nervous tissue in adults. To study the influence of extracellular conditions on neurite outgrowth and cell motility, PC12 cells were suspended in three-dimensional gels containing (i) collagen (0.4 to 2 mg/mL), (ii) collagen (1 mg/mL) with added fibronectin or laminin (1 to 100 mug/mL), and (iii) agarose (7 mg/mL) with added collagen (0.001 to 1 mg/mL). Neurite outgrwoth was stimulated with nerve growth factor (NGF) and both the extent of neurite outgrowth ad cell aggregation were quantitated over 10 to 12 days in culture. The extent of neurite outgrowth was greatest at the lowest collagen concentration tested (0.4 mg/mL) and decreased with increasing concentration. The addition of laminin or fibronectin altered the extent of neurite outgrowth in collagen gels, but the differences were small. Although no neurite growth was observed in pure agarose gels, considerable neurite outgrowth occurred with the addition of small amounts (>/=0.01 mg/mL) of collagen. Mean aggregate size increased more quickly in gels with lower concentrations of collagen. For cells in 1.0 mg/mL collagen, a four- to fivefold increase in aggregate volume was seen between days 2 and 10 o the culture period, whereas the increase in DNA content during this same period was less than twofold, suggesting that the cells were aggregating, not multiplying. These results suggest that the composition of the matrix supporting nerve cells has a significant effect on both neurite outgrowth and cell motility. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Remodeling of extracellular matrix involves a number of steps including the recruitment, accumulation, and eventual apoptosis of parenchymal cells as well as the production, organization, and rearrangement of extracellular matrix produced by these cells. The culture of fibroblasts in three-dimensional gels made of type I collagen has been used as a model of tissue contraction which characterizes both wound repair and fibrosis. The current study was designed to determine the effect of initial collagen concentration on the ability of fibroblasts to contract collagen gels and on cell survival. Native type I collagen was extracted from rat tail tendons and used to prepare collagen gels with varying collagen concentrations (0.75-2.0 mg/ml). Human lung fibroblasts (HFL-1) were cast into the gels and cultured in Dulbecco modified Eagle medium with 0.1% fetal calf serum for 2 wk. The gel size, collagen content, and deoxyribonucleic acid (DNA) content were determined. Gels prepared with an initial concentration of 0.75 mg/ml contracted more rapidly and to a smaller final size than gels prepared from 2 mg/ml initial collagen concentration (final size 7.1 versus 36.4% of initial size, P < 0.01). There was no significant degradation of the collagen in the gels under either condition. Hence, the dramatically increased contraction of the lower density gels resulted in a higher final density (P < 0.01). Cell density was estimated from DNA content. In low initial density gels, the final DNA content was significantly less than that in higher initial density gels (0.73 versus 1.88 microg/gel, P < 0.05). This was accompanied by an increased percentage of apoptotic cells at day 14 (43.3 versus 34.1%, P < 0.05). If the gels were maintained in the attached state which largely prevents contraction, apoptosis was significantly reduced, suggesting that contraction rather than matrix composition was a requirement for the increased apoptosis. In summary, these findings indicate that the initial matrix composition can lead to differing outcomes during fibroblast-mediated wound contraction.  相似文献   

6.
7.
Wnt genes encode a number of secreted glycoproteins which are closely associated with the cell surface and the extracellular matrix. Recently, members of Wnt family have been implicated in regulating chondrocyte differentiation, but their roles in the chondrogenic process are not fully understood. To contribute to an understanding of the roles of Wnts during chondrogenesis, we have analysed the spatiotemporal expression patterns of Wnt using in vitro models for chondrogenesis of human bone marrow-derived mesenchymal stem cells (hMSCs). In chondrogenic aggregate culture system, RT-PCR analysis revealed expression of Wnt5a and Wnt4 during late chondrogenesis (days 10 and 15). Immunohistochemical analysis showed widespread distribution of Wnt5a and Wnt4 throughout the aggregates at this late phase of culture (days 14 and 21). In addition, in this aggregate culture system, immunohistochemical staining of Wnt4 and Wnt5a showed similar spatiotemporal expression patterns to that of type II collagen or type X collagen. To confirm the results obtained by immunostaining, the specificity of the anti-Wnt4 or anti-Wnt5a antibody was assessed by Western blot analysis. Of Wnt4 and Wnt5a, only Wnt5a was immunodetectable by Western blot analysis. Western blot analysis showed that Wnt5a was expressed as two different molecular weight forms of 40 and 44 kDa. Treatment with PNGase F, which removes N-linked oligosaccharides, revealed that the mass difference between these two forms could be accounted for by the N-glycosylation status of the protein. When hMSCs were seeded on a porous gelatin sponge, immunolocalization studies showed that type II collagen and type X collagen were detected particularly at the periphery at day 7 of culture. In contrast, Wnt4 and Wnt5a showed even distribution throughout the hMSC/gelatin sponge constructs. Their different spatial expression patterns suggest that Wnt4 and Wnt5a proteins are not functionally linked to type II collagen and type X collagen synthesis in in vitro chondrogenic models of hMSCs.  相似文献   

8.
A scaffold made of equine collagen type I based material has been assessed for its use in the preparation of tissue-engineered cartilage implants with human articular chondrocytes. Improvements of cell-seeding efficiency and specific gene expression were studied by combining solid scaffold with fibrin glue or human blood plasma. Following 3 weeks of static culture, mRNA expression levels of collagen type I, collagen type II, aggrecan and versican were analyzed by real-time quantitative PCR and compared to those in native cartilage and monolayer cell cultures.Constructs prepared with fibrin glue or plasma showed higher cell seeding efficiencies than those prepared without gel. Chondrocytes seeded directly onto a collagen scaffold appeared fibroblastic in shape while those encapsulated in fibrin gel were spherical. The presence of fibrin glue positively influences on mRNA levels of collagen type II and aggrecan, while blood plasma enhanced only the level of collagen type II expression. Levels of collagen type I and versican decreased in presence of fibrin glue.In orthopaedics, the combination of solid collagen fleece with fibrin gel for implant preparation is seen to be preferred over solid material or even cells in a suspension, since fibrin gel improves seeding capacity of the scaffold, supports equal distribution of cells and stimulates higher chondrogenic phenotype expression.  相似文献   

9.
Summary Dissociated fetal rat brain cells (Day 14.5 of gestation) reaggregated into small cell clusters and formed large aggregates in a medium supplemented with serum or dialyzed serum in an aggregating culture. In contrast, only small aggregates were produced in a serum-free medium. The present results indicated that albumin, fetuin, transferrin, and {ie1031-1}-antitrypsin enhanced the aggregate formation. Small aggregates produced in a serum-free medium elongated neurites when they were cultured within a collagen gel matrix. Total DNA per flask was almost the same in small and large aggregates. Thus, these serum proteins may well play an important role in the adhesion of small cell clusters and cause the formation of large aggregates in this short-term aggregating culture.  相似文献   

10.
Advances in micropatterning methodologies have made it possible to create structures with precise architecture on the surface of cell culture substrata. We applied these techniques to fabricate microfeatures (15-65 microm wide; 40 microm deep) on the surface of a flexible, biocompatible polysaccharide gel. The micropatterned polymer gels were subsequently applied as scaffolds for chondrocyte culture and proved effective in maintaining key aspects of the chondrogenic phenotype. These were rounded cell morphology and a positive and statistically significant (p < 0.0001) immunofluorescence assay for the production of type II collagen throughout the maximum culture time of 10 days after cell seeding. Further, cells housed within individual surface features were observed to proliferate, while serial application of chondrocytes resulted in the formation of cellular aggregates. These methods represent a novel approach to the problem of engineering reparative cartilage in vitro.  相似文献   

11.
Summary We describe a method for maintaining neonatal pig pancreatic isletlike cell clusters (as pseudo-islets) embedded in a collagen gel matrix for long periods. The pseudo-islets were formed from single cells of pig pancreas maintained in a suspension culture and then embedded in pepsin-solubilized type I collagen. When the pseudo-islets were cultured in the collagen matrix, the amount of collagen in the culture decreased gradually during the culture period as soluble hydroxyproline-containing material accumulated in the medium. A low concentration of collagen (0.16%) degraded the collagen gels more rapidly than did high concentrations of collagen (0.64%). The degradation of collagen depended both on the number of pseudo-islets embedded in the gel matrix and on the culture conditions used to maintain them. With added nicotinamide, the accumulation of hydroxyproline decreased in the medium and the structure of the gel matrix was well maintained. Hydrocortisone or a specific inhibitor of collagenase did not decrease the solubilization of embedded pseudo-islet cultures and did not help to maintain their structure. These observation indicate the possible utility of long-term maintenance of pseudo-islets in collagen gel matrix in the presence of nicotinamide. This work was supported by a Grant-in-Aid for Scientific Research in Japan  相似文献   

12.
Cell morphology is known to modulate the multipotential lineage commitment of stem cells. We provide a new strategy to induce the early lineage commitment of human mesenchymal stem cells (hMSCs) toward a cardiomyogenic fate through the formation of cell aggregates. A surface-immobilized polyamidoamine dendrimer with fifth generation of dendron structure was used during the culturing of hMSCs. These hMSCs cultured on the G5 surface formed aggregates through active migration and division. More than 22% of cardiac troponin-T (cTnT)-positive (cTnT+) cells in aggregates formed on the dendrimer surface; the population formed on the dendrimer surface was higher than that in conventional culture vessel. When cell aggregate was reseeded onto a fresh G5 surface, single cells migrated out of the aggregates, proliferated, and formed new aggregates. This passage method, accompanied with repetitive aggregate dispersion and formation, was applied to cultures over 40 days. The proportion of cTnT+ cells increased to 62% by the end of third passage. Our results suggest that culturing hMSCs on G5 surface results in directed commitment of the hMSCs toward a cardiomyocyte-like fate.  相似文献   

13.
14.
This work describes an approach to monitor chondrogenesis of stage-24 chick limb mesodermal cells in vitro by analyzing the onset of type II collagen synthesis with carboxymethyl-cellulose chromatography, immunofluorescence, and radioimmunoassay. This procedure allowed specific and quantitative determination of chondrocytes in the presence of fibroblasts and myoblasts, both of which synthesize type I collagen. Chondrogenesis was studied in high-density cell preparations on tissue culture plastic dishes and on agar base. It was found that stage-24 limb mesenchymal cells initially synthesized only type I collagen. With the onset of chondrogenesis, a gradual transition to type II collagen synthesis was observed. In cell aggregates formed over agar, type II collagen synthesis started after 1 day in culture and reached levels of 80-90 percent of the total collagen synthesis at 6-8 days. At that time, the cells in the center of the aggregates had acquired the typical chondrocyte phenotype and stained only with type II collagen antibodies, whereas the peripheral cells had developed into a "perichondrium" and stained with type I and type II collagen antibodies. On plastic dishes plated with 5 X 10(6) cells per 35mm dish, cartilage nodules developed after 4-6 days, but the type II collagen synthesis only reached levels of 10-20 percent of the total collagen. The majority of the cells differentiated into fibroblasts and myoblasts and synthesized type I collagen. These studies demonstrate that analysis of cell specific types of collagen provides a useful method for detailing the specific events in the differentiation of mesenchymal cells in vitro.  相似文献   

15.
Rat frontonasal and mandibular mesenchyme was isolated from day-12 1/2 (stage-22) rat embryos and cultured at high density for up to 12 days. The stage chosen was based on the observation that mandibular mesenchyme at this stage became independent of its epithelium with respect to the production of both cartilage and bone. Frontonasal cultures developed aggregates of anastomosing columns of cells within 2 days. These grew as the cells enlarged, laying down an Alcian-blue-positive matrix by day 3 of culture. Significant mineral was detected by von Kossa staining by day 5 at which time the aggregates covered a large portion of the culture, eventually covering the entire micromass by day 10-12. Mandibular cultures developed centrally located nodular aggregates by 3 days of culture. These nodules increased in number, spreading outwards as the cells enlarged, laying down an Alcian-blue-positive matrix by day 4 and mineral by days 6-7. At this time the nodules began to elongate and coalesce, but never covered the entire culture over the 12-day period. Antibody staining revealed that in both cultures the cells were initially positive for type I collagen. Subsequently, the aggregates began expressing type II collagen, followed by type X, which coincided with the onset of mineralization. At this time some cells were negative for these cartilage markers, but positive for osteoblast markers, bone sialoprotein II, osteocalcin and type I collagen. In addition osteonectin and alkaline phosphatase were demonstrable in all of the aggregate cells late in the culture period. This provided clear evidence that chondroblast and osteoblast differentiation was proceeding within these cultures. The culture of rat facial mesenchyme should prove very useful, not only for the analysis of bone and cartilage induction and lineage relationships, but also in furthering our knowledge of craniofacial differentiation, growth and pattern formation by extending our analysis to a mammalian system.  相似文献   

16.
Summary Gels of glyoxyl agarose (GA) are evaluated as a novel flexible substrate for cell culture with physical properties comparable to extracellular matrix (ECM) gels. We show here that cells adhere well to pure GA gels; in addition, specific interactions involving matrix receptors can be studied when individual matrix molecules are bound to the gel covalently. When cells are grown on such substrates, morphology is comparable to that observed on “natural” matrix gels (reconstituted gels of collagen type I or of Matrigel): rather than being flattened as in monolayer cultures on tissue culture plastic the cells assume a rounded morphology and tend to form tissue-like aggregates. The effects of the artificial matrix gels are discussed in the context of previous publications on cell interactions with the extracellular matrix, suggesting that in addition to specific recognition of matrix molecules the physical properties of ECM by themselves can be decisive for cell differentiation. We conclude that gels of glycoxyl agarose a) provide a useful model to mimic the physical properties of matrix gels without the presence of specific adhesion factors; b) may be useful as a general, non-specific ECM allowing cells to be cultured in vitro under conditions favorable for differentiation; and c) allow to design a variety of “synthetic” ECM models composed of a chemically defined gel matrix, which can be supplemented with covalently bound molecules to be recognized by cell surface receptors.  相似文献   

17.
In order to investigate possible cell positional effects on the gene expression of human dermal fibroblasts, the authors cultured the cells on non-coated polystyrene culture dishes, type I collagen-coated dishes, or collagen gels formed by type I collagen, or suspended them in type I collagen gels and measured collagen synthesis by the cells. The production rate of type I collagen was similar whether cells were cultured on non-coated polystyrene or on type I collagen-coated dishes, but it was suppressed significantly when the cells were placed within the collagen gel matrix. Time-dependent expression of genes for α1(I) and α2(I) collagen chains was measured by Northern blot analysis. A significant increase in mRNA levels for these chains was observed when the cells were cultured for three days on type I collagen-coated dishes or on collagen gels. On the other hand, a significant decrease in the mRNA levels was observed after 2 days and later, when the cells were cultured within type I collagen gel matrix. These results indicate that human dermal fibroblasts recognize their position on or in type I collagen (extracellular matrix) and respond by changing their expression patterns of type I collagen chain genes. The results of the kinetics of gene expression also suggest that upregulation and downregulation of type I collagen genes are controlled by different mechanisms.  相似文献   

18.
To investigate whether the chondrocytes-alginate construct properties, such as cell seeding density and alginate concentration might affect the redifferentiation, dedifferentiated rat articular chondrocytes were encapsulated at low density (LD: 3 x 10(6) cells/ml) or high density (HD: 10 x 10(6) cells/ml) in two different concentrations of alginate gel (1.2% or 2%, w/v) to induce redifferentiation. Cell viability and cell proliferation of LD culture was higher than those of HD culture. The increase in alginate gel concentration did not make an obvious difference in cell viability, but reduced cell proliferation rate accompanied with the decrease of cell population in S phase and G2/M phase. Scan electron microscopy observation revealed that chondrocytes maintained round in shape and several direct cell-cell contacts were noted in HD culture. In addition, more extracellular matrix was observed in the pericellular region of chondrocytes in 2% alginate culture than those in 1.2% alginate culture. The same tendency was found for the synthesis of collagen type II. No noticeable expression of collagen type I was detected in all constructs at the end of 28-day cultures. These results suggested that construct properties play an important role in the process of chondrocytes' redifferentiation and should be considered for creating of an appropriate engineered articular cartilage.  相似文献   

19.
rES (rhesus monkey embryonic stem) cells have similar characteristics to human ES (embryonic stem) cells, and might be useful as a substitute model for preclinical research. Before their clinical application, it is critical to understand the roles of factors that control the differentiation of ES cells into hepatocytes. Here, we analysed the effect of collagen gels on rES cells differentiation into hepatocytes by stepwise protocols. About 80% of DE (definitive endoderm) cells were generated from rES cells after being treated with activin A. The DE cells were then plated on to collagen gels or type I collagen-coated wells with growth factors to induce hepatocyte differentiation. In type I collagen systems, characteristics of immature hepatocytes were observed, including the expression of immature hepatic genes and the generation of 15±3% AFP (alpha fetoprotein)/CK (cytokeratin)18 double-positive cells. In collagen gel culture, differentiated cells exhibited typical hepatocyte morphology and expressed adult liver-specific genes. The mRNA expression of AFP (immature hepatic gene) was detected at day 11 but decreased at day 18. In contrast, mRNA expression of albumin (mature hepatic gene) was detected at day 11 and increased at day 18. Compared with type I collagen systems, significantly higher AFP/CK18 double-positive cells (68±7%) were produced in collagen gel culture. Furthermore, some differentiated cells acquired the hepatocytic function of glycogen storage. However, only immature hepatic genes were observed in collagen gel systems if growth factors were absent. Thus, collagen gels combined with hepatocyte-inducing growth factors efficiently promoted differentiation of hepatocytes from rES.  相似文献   

20.
Understanding initial cell growth, interactions associated with the process of expansion of human neural precursor cells (hNPCs), and cellular events pre- and postdifferentiation are important for developing bioprocessing protocols to reproducibly generate multipotent cells that can be used in basic research or the treatment of neurodegenerative disorders. Herein, we report the in vitro responses of telencephalon hNPCs grown in a serum-free growth medium using time-lapse live imaging as well as cell-surface marker, aggregate size, and immunocytochemical analyses. Time-lapse analysis of hNPC initial expansion indicated that cell-surface attachment in stationary culture and the frequency of cell-cell interaction in suspension conditions are important for subsequent aggregate formation and hNPC growth. In the absence of cell-surface attachment in low-attachment stationary culture, large aggregates of cells were formed and expansion was adversely affected. The majority of the telencephalon hNPCs expressed CD29, CD90, and CD44 (cell surface markers involved in cell-ECM and cell-cell interactions to regulate biological functions such as proliferation), suggesting that cell-surface attachment and cell-cell interactions play a significant role in the subsequent formation of cell aggregates and the expansion of hNPCs. Before differentiation, about 90% of the cells stained positive for nestin and expressed two neural precursor cells surface markers (CD133 and CD24). Upon withdrawal of growth cytokines, hNPCs first underwent cell division and then differentiated preferentially towards a neuronal rather than a glial phenotype. This study provides key information regarding human NPC behavior under different culture conditions and favorable culture conditions that are important in establishing reproducible hNPC expansion protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号