首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerobic batch cultivations of Candida utilis were carried out in two micro bioreactors with a working volume of 100 μL operated in parallel. The dimensions of the micro bioreactors were similar as the wells in a 96‐well microtiter plate, to preserve compatibility with the current high‐throughput cultivation systems. Each micro bioreactor was equipped with an electrochemical sensor array for the online measurement of temperature, pH, dissolved oxygen, and viable biomass concentration. Furthermore, the CO2 production rate was obtained from the online measurement of cumulative CO2 production during the cultivation. The online data obtained by the sensor array and the CO2 production measurements appeared to be very reproducible for all batch cultivations performed and were highly comparable to measurement results obtained during a similar aerobic batch cultivation carried out in a conventional 4L bench‐scale bioreactor. Although the sensor chip certainly needs further improvement on some points, this work clearly shows the applicability of electrochemical sensor arrays for the monitoring of parallel micro‐scale fermentations, e.g. using the 96‐well microtiterplate format. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
Microtiter plates with integrated optical sensing of dissolved oxygen were developed by immobilization of two fluorophores at the bottom of 96-well polystyrene microtiter plates. The oxygen-sensitive fluorophore responded to dissolved oxygen concentration, whereas the oxygen-insensitive one served as an internal reference. The sensor measured dissolved oxygen accurately in optically well-defined media. Oxygen transfer coefficients, k(L)a, were determined by a dynamic method in a commercial microtiter plate reader with an integrated shaker. For this purpose, the dissolved oxygen was initially depleted by the addition of sodium dithionite and, by oxygen transfer from air, it increased again after complete oxidation of dithionite. k(L)a values in one commercial reader were about 10 to 40 h(-1). k(L)a values were inversely proportional to the filling volume and increased with increasing shaking intensity. Dissolved oxygen was monitored during cultivation of Corynebacterium glutamicum in another reader that allowed much higher shaking intensity. Growth rates determined from optical density measurement were identical to those observed in shaking flasks and in a stirred fermentor. Oxygen uptake rates measured in the stirred fermentor and dissolved oxygen concentrations measured during cultivation in the microtiter plate were used to estimate k(L)a values in a 96-well microtiter plate. The resulting values were about 130 h(-1), which is in the lower range of typical stirred fermentors. The resulting maximum oxygen transfer rate was 26 mM h(-1). Simulations showed that the errors caused by the intermittent measurement method were insignificant under the prevailing conditions.  相似文献   

3.
The recent process analytical technology (PAT) initiative has put an increased focus on online sensors to generate process-relevant information in real time. Specifically for fermentation, however, introduction of online sensors is often far from straightforward, and online measurement of biomass is one of the best examples. The purpose of this study was therefore to compare the performance of various online biomass sensors, and secondly to demonstrate their use in early development of a filamentous cultivation process. Eight Streptomyces coelicolor fed-batch cultivations were run as part of process development in which the pH, the feeding strategy, and the medium composition were varied. The cultivations were monitored in situ using multi-wavelength fluorescence (MWF) spectroscopy, scanning dielectric (DE) spectroscopy, and turbidity measurements. In addition, we logged all of the classical cultivation data, such as the carbon dioxide evolution rate (CER) and the concentration of dissolved oxygen. Prediction models for the biomass concentrations were estimated on the basis of the individual sensors and on combinations of the sensors. The results showed that the more advanced sensors based on MWF and scanning DE spectroscopy did not offer any advantages over the simpler sensors based on dual frequency DE spectroscopy, turbidity, and CER measurements for prediction of biomass concentration. By combining CER, DE spectroscopy, and turbidity measurements, the prediction error was reduced to 1.5 g/l, corresponding to 6% of the covered biomass range. Moreover, by using multiple sensors it was possible to check the quality of the individual predictions and switch between the sensors in real time.  相似文献   

4.
5.
Sustained oscillations of biomass, ethanol, and ammonium concentrations, specific growth rate, and specific uptake rates of ethanol, ammonium, and oxygen were found in continuous cultures of Saccharomyces cerevisiae under controlled dissolved oxygen (DO), pH, and temperature conditions. The period of oscillations was approximately 2.5-3 h at a pH of 5.5 and 2-2.5 h at a pH of 6.5. Oscillations were observed only under conditions of low carbon (glucose below the minimum detectable level), nitrogen nutrient (ammonium concentration varied between 0.00001 and 0.0015M), and ethanol concentration (0.002-0.085 g/L) in the bioreactor.The oscillatory behavior at pH 5.5 was also characterized by partially synchronized cell growth and reproduction. Not only did the total percentage of budding cells oscillate with the same period as observed for the global biomass and nutrient concentrations, but the peaks in the individual subpopulations of initial budding, middle budding, and late budding cells appeared sequentially during the oscillation period. This provides strong evidence of the hypothesis that variations in metabolism during different periods in the cell cycle of a partially synchronized cell population are responsible for the observed oscillatory bioreactor behavior.The specific nutrient uptake rates for ammonium and oxygen as well as the net specific ethanol uptake rate oscillated with the same period as the biomass oscillations. These results show a dramatic increase in the ammonium and oxygen consumption rates prior to the initial budding of the synchronized subpopulation and a decrease in these rates during the late budding phase. At a pH of 5.5, the late budding phase is characterized by high specific ethanol productivity; however, the ethanol productivity lags the late budding phase at a pH pf 6.5. The observed time-varying metabolism in the oscillatory operating regime appears to be the result of the metabolic changes which occur during the cell cycle. Models which can predict the oscillatory biomass concentration and nutrient levels in this regime must be capable of predicting the concentrations and metabolic rates of the subpopulations as well.  相似文献   

6.
The system described is a modified Hospodka's turbidostat. This device helps to measure the maximum growth rate of fungi in steady-state aerobic conditions with defined and independent concentration of dissolved oxygen, biomass, and substrate even unlimited. The principle consists of a turbidostat controlled by the dissolved oxygen concentration. The inlet medium pump operates when the dissolved oxygen concentration falls below the set point value. This method allows us to study independently effects of different physical and chemical variables on the maximum specific growth rate of microorganisms. A fungus, Fusarium oxysporum 47 isolated from soil, does not show a depressive effect on growth when dissolved oxygen concentration decreases to 5% and osmotic potential to -25 bars. Increasing biomass concentration in the range 0.1-1.0 g/L appears to depress markedly the maximum growth rate.  相似文献   

7.
In this paper, an approach to the estimation of multiple biomass growth rates and biomass concentration is proposed for a class of aerobic bioprocesses characterized by on-line measurements of dissolved oxygen and carbon dioxide concentrations, as well as off-line measurements of biomass concentration. The approach is based on adaptive observer theory and includes two steps. In the first step, an adaptive estimator of two out of three biomass growth rates is designed. In the second step, the third biomass growth rate and the biomass concentration are estimated, using two different adaptive estimators. One of them is based on on-line measurements of dissolved oxygen concentration and off-line measurement of biomass concentrations, while the other needs only on-line measurements of the carbon dioxide concentration. Simulations demonstrated good performance of the proposed estimators under continuous and batch-fed conditions.  相似文献   

8.
High-throughput (HT) miniature bioreactor (MBR) systems are becoming increasingly important to rapidly perform clonal selection, strain improvement screening, and culture media and process optimization. This study documents the initial assessment of a 24-well plate MBR system, Micro (micro)-24, for Saccharomyces cerevisiae, Escherichia coli, and Pichia pastoris cultivations. MBR batch cultivations for S. cerevisiae demonstrated comparable growth to a 20-L stirred tank bioreactor fermentation by off-line metabolite and biomass analyses. High inter-well reproducibility was observed for process parameters such as on-line temperature, pH and dissolved oxygen. E. coli and P. pastoris strains were also tested in this MBR system under conditions of rapidly increasing oxygen uptake rates (OUR) and at high cell densities, thus requiring the utilization of gas blending for dissolved oxygen and pH control. The E. coli batch fermentations challenged the dissolved oxygen and pH control loop as demonstrated by process excursions below the control set-point during the exponential growth phase on dextrose. For P. pastoris fermentations, the micro-24 was capable of controlling dissolved oxygen, pH, and temperature under batch and fed-batch conditions with subsequent substrate shot feeds and supported biomass levels of 278 g/L wet cell weight (wcw). The average oxygen mass transfer coefficient per non-sparged well were measured at 32.6 +/- 2.4, 46.5 +/- 4.6, 51.6 +/- 3.7, and 56.1 +/- 1.6 h(-1) at the operating conditions of 500, 600, 700, and 800 rpm shaking speed, respectively. The mixing times measured for the agitation settings 500 and 800 rpm were below 5 and 1 s, respectively.  相似文献   

9.
A face-centered central composite design was applied to optimize a cultivation condition for improved beta-carotene production by Rhodotorula glutinis DM28 in a stirred tank reactor using 30 g/l total soluble solid of fermented radish brine as a sole substrate. The experiments were performed with regression models, where temperature, pH and dissolved oxygen were considered as variables. Results showed that an optimum condition for beta-carotene production of the yeast was at 30 degrees C, pH 6 and 80% dissolved oxygen. Under this condition, the yeast yielded 2.7 g/l biomass and the maximum beta-carotene of 201 microg/l after 24-h fermentation indicating approximately 15% higher than those under an initial condition (2.3g/l and 178 microg/l, respectively).  相似文献   

10.
The growth of natural bacterial assemblages was monitored in 3-liter reactors under various temperature and substrate concentration conditions. The oxygen concentration was continuously monitored, and subsamples were taken at short time intervals to determine bacterial number and biomass. The rate of bacterial mortality was also determined. Bacterial growth yield was calculated as the ratio of net production (increase in biomass corrected for mortality) to gross production (net production plus oxygen consumption expressed in carbon units). Averaging 33%, the growth yield did not show any trend with temperatures in the range of 8 to 25 degrees C but increased with the concentration of dissolved organic carbon in the range of 2 to 12 mg of C.liter-1.  相似文献   

11.
Oxygen uptake and citric acid production by Candida lipolytica Y 1095   总被引:1,自引:0,他引:1  
The rates of oxygen uptake and oxygen transfer during cell growth and citric acid production by Candida lipolytica Y 1095 were determined. The maximum cell growth rate, 1.43 g cell/L . h, and volumetric oxygen uptake rate, 343 mg O(2)/L . h, occurred approximately 21 to 22 h after inoculation. At the time of maximum oxygen uptake, the biomass concentration was 1.3% w/v and the specific oxygen uptake rate was slightly greater than 26 mg O(2)/g cell . h. The specific oxygen uptake rate decreased to approximately 3 mg O(2)/g cell . h by the end of the growth phase.During citric acid production, as the concentration of dissolved oxygen was increased from 20% to 80% saturation, the specific oxygen uptake and specific citric acid productivity (mg citric acid/g cell . h) increased by 160% and 71%, respectively, at a biomass concentration of 3% w/v. At a biomass concentration of 5% w/v, the specific oxygen uptake and specific citric acid productivity increased by 230% and 82%, respectively, over the same range of dissolved oxygen concentrations.The effect of dissolved oxygen on citric acid yields and productivities was also determined. Citric acid yields appeared to be independent of dissolved oxygen concentration during the initial production phase; however, volumetric productivity (g citric acid/L . h) increased sharply with an increase in dissolved oxygen. During the second or subsequent production phase, citric acid yields increased by approximately 50%, but productivities decreased by roughly the same percentage due to a loss of cell viability under prolonged nitrogen-deficient conditions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
A catheter-type optical oxygen sensor based on phosphorescence lifetime was developed for medical and animal experimental use. Since the sensor probe should have biocompatibility and high oxygen permeability in vivo, we focused attention on acceptable polymer materials for contact lenses as the substrates of probes. Pd-porphyrin was doped in silicone-based polymer, and was fixed at the edge of an optical fiber inserted in a catheter tube. The shape of the probe was 600 μm in diameter and 100 μm in thickness, and the probe had high oxygen permeability of Dk value 455. In accuracy evaluation, there found an excellent correlation between the pO2 values measured through phosphorescence lifetime using the oxygen sensors and those measured as the calibrating data using oxygen electrodes. The response time required to achieve 90% from reversible default value to be from 150 to 0 mmHg, and from 0 to 150 mmHg was 15.43 and 7.52 s, respectively. In addition, other properties such as temperature and pH dependency, response, and durability of our optical oxygen sensor were investigated. In animal experiments, the catheter-type oxygen sensor was inserted via the femoral artery of a rat, and arterial oxygen pressure was monitored under asphyxiation. The sensor was valid in the range of oxygen concentration sufficient for biometry, and expected to be integrated with an indwelling needle.  相似文献   

13.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   

14.
A new disposable, multiphase, microbioreactor (MBR; with a working volume of 550 μl) equipped with online sensors is presented for biotechnological screening research purposes owing to its high-throughput potential. Its design and fabrication, online sensor integration, and operation are described. During aerobic cultivation, sufficient oxygen supply is the most important factor that influences growth and product formation. The MBR is a microbubble column bioreactor (μBC), and the oxygen supply was realized by active pneumatic bubble aeration, ensuring sufficient volumetric liquid-phase mass transfer (k L a) and proper homogenization of the cultivation broth. The μBC was equipped with miniaturized sensors for the pH, dissolved oxygen, optical density and glucose concentration that allowed real-time online monitoring of these process variables during cultivation. The challenge addressed here was the integration of sensors in the limited available space. The MBR was shown to be a suitable screening platform for the cultivation of biological systems. Batch cultivations of Saccharomyces cerevisiae were performed to observe the variation in the process variables over time and to show the robustness and operability of all the online sensors in the MBR.  相似文献   

15.
Summary The growth of recombinant Escherichia coli, consumption of different amino acids and glucose as well as fusion protein formation are simulated by a structured mathematical model and compared with measurements carried out in a stirred tank reactor under well-controlled conditions. The model parameters were identified based on the variation in cell concentration, particular amino acids, and glucose as well as intracellular products during cultivation. The dependence of the model parameters on cultivation time and culture conditions (temperature, medium composition, dissolved oxygen concentration) are discussed.Offprint requests to: K. Schügerl  相似文献   

16.
Miniaturization and automation have become increasingly popular in bioprocess development in recent years, enabling rapid high‐throughput screening and optimization of process conditions. In addition, advances in the bioprocessing industry have led to increasingly complex process designs, such as pH and temperature shifts, in microbial fed‐batch fermentations for optimal soluble protein expression in a range of hosts. However, in order to develop an accurate scale‐down model for bioprocess screening and optimization, small‐scale bioreactors must be able to accurately reproduce these complex process designs. Monitoring methods, such as fluorometric‐based pH sensors, provide elegant solutions for the miniaturization of bioreactors, however, previous research suggests that the intrinsic fluorescence of biomass alters the sigmoidal calibration curve of fluorometric pH sensors, leading to inaccurate pH control. In this article, we present results investigating the impact of biomass on the accuracy of a commercially available fluorometric pH sensor. Subsequently, we present our calibration methodology for more precise online measurement and provide recommendations for improved pH control in sophisticated fermentation processes.  相似文献   

17.
Application of a biosensor for monitoring of ethanol   总被引:4,自引:0,他引:4  
An alcohol biosensor for the measurement of ethanol has been developed. It comprises an alcohol oxidase/chitosan immobilized eggshell membrane and a commercial oxygen sensor. Ethanol determination is based on the depletion of dissolved oxygen content upon exposure to ethanol solution. The decrease in oxygen level was monitored and related to the ethanol concentration. The biosensor response depends linearly on ethanol concentration between 60 microM and 0.80 mM with a detection limit of 30 microM (S/N=3) and 1 min response time. In the optimization studies of the enzyme biosensor the most suitable enzyme and chitosan amounts were found to be 1.0 mg and 0.30% (w/v), respectively. The phosphate buffer (pH 7.4, 25 mM) and room temperature (20-25 degrees C) were chosen as the optimum working conditions. In the characterization studies of the ethanol biosensor some parameters such as interference effects, operational and storage stability were studied in detail. The biosensor was also tested with various wine samples. The results of this newly developed biosensor were comparable to the results obtained by a gas chromatographic method.  相似文献   

18.
为提高重组毕赤酵母生产人血清白蛋白-C肽融合蛋白(HSA—CP)的产量和生产强度,在摇瓶条件下考察了甲醇诱导时间和浓度对目的蛋白产量的影响。结果表明,质量浓度10g/L的甲醇诱导72h最适于产物表达。通过对7L发酵罐中各因素的优化,得到最佳条件为:初始甘油质量浓度10g/L,30℃培养,菌体生长期和诱导期的pH及溶氧分别控制在pH5.0、30%溶解O2或pH6.0、15%的溶解O2。10g/L的甲醇诱导72h,最终使干细胞质量浓度达到56.43g/L,目的蛋白产量达368.45mg/L。生产强度为3.920mg/(L·h),目标蛋白的比生产速率为5.12mg/(L·h)。  相似文献   

19.
The lack of sensors for some relevant state variables in fermentation processes can be coped by developing appropriate software sensors. In this work, NARX-ANN, NARMAX-ANN, NARX-SVM and NARMAX-SVM models are compared when acting as software sensors of biomass concentration for a solid substrate cultivation (SSC) process. Results show that NARMAX-SVM outperforms the other models with an SMAPE index under 9 for a 20 % amplitude noise. In addition, NARMAX models perform better than NARX models under the same noise conditions because of their better predictive capabilities as they include prediction errors as inputs. In the case of perturbation of initial conditions of the autoregressive variable, NARX models exhibited better convergence capabilities. This work also confirms that a difficult to measure variable, like biomass concentration, can be estimated on-line from easy to measure variables like CO2 and O2 using an adequate software sensor based on computational intelligence techniques.  相似文献   

20.
A biochemical oxygen demand (BOD) sensor has been developed, which is based on an immobilized mixed culture of microorganisms combined with a dissolved oxygen (DO) optical fiber. The sensing film for BOD measurement consists of an organically-modified silicate (ORMOSIL) film embedded with tri(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) perchlorate and three kinds of seawater microorganisms immobilized on a polyvinyl alcohol sol-gel matrix. The BOD measurements were carried out in the kinetic mode inside a light-proof cell and with constant temperature. Measurements were taken for 3 min followed by 10 min recovery time in 10 mg/L glucose/glutamate (GGA) BOD standard solution, and the range of determination was from 0.2 to 40 mg/L GGA. The effects of temperature, pH and sodium chloride concentration on the BOD sensing films were studied. BOD values estimated by this optical BOD sensing film correlate well with those determined by the conventional BOD5 method for seawater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号