首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defects of peripheral nerves still represent a challenge for surgical nerve reconstruction. Recent studies concentrated on replacement by artificial nerve conduits from different synthetic or biological materials. In our study, we describe for the first time the use of spider silk fibres as a new material in nerve tissue engineering. Schwann cells (SC) were cultivated on spider silk fibres. Cells adhered quickly on the fibres compared to polydioxanone monofilaments (PDS). SC survival and proliferation was normal in Live/Dead assays. The silk fibres were ensheathed completely with cells. We developed composite nerve grafts of acellularized veins, spider silk fibres and SC diluted in matrigel. These artificial nerve grafts could be cultivated in vitro for one week. Histological analysis showed that the cells were vital and formed distinct columns along the silk fibres. In conclusion, our results show that artificial nerve grafts can be constructed successfully from spider silk, acellularized veins and SC mixed with matrigel.  相似文献   

2.
Osteoarthritis is a severe socio-economical disease, for which a suitable treatment modality does not exist. Tissue engineering of cartilage transplants is the most promising method to treat focal cartilage defects. However, current culturing procedures do not yet meet the requirements for clinical implementation. This article presents a novel bioreactor device for the functional tissue engineering of articular cartilage which enables cyclic mechanical loading combined with medium perfusion over long periods of time, under controlled cultivation and stimulation conditions whilst ensuring system sterility. The closed bioreactor consists of a small, perfused, autoclavable, twin chamber culture device with a contactless actuator for mechanical loading. Uni-axial loading is guided by externally applied magnetic fields with real-time feedback-control from a platform load cell and an inductive proximity sensor. This precise measurement allows the development of the mechanical properties of the cultured tissue to be monitored in real-time. This is an essential step towards clinical implementation, as it allows accounting for differences in the culture procedure induced by patient-variability. This article describes, based on standard agarose hydrogels of 3 mm height and 10 mm diameter, the technical concept, implementation, scalability, reproducibility, precision, and the calibration procedures of the whole bioreactor instrument. Particular attention is given to the contactless loading system by which chondrocyte scaffolds can be compressed at defined loading frequencies and magnitudes, whilst maintaining an aseptic cultivation procedure. In a "proof of principle" experiment, chondrocyte seeded agarose gels were cultured for 21 days in the bioreactor system. Intermittent medium perfusion at a steady flow rate (0.5 mL/min) was applied. Sterility and cell viability (ds-DNA quantification and fluorometric live/dead staining) were preserved in the system. Flow induced shear stress stimulated sGAG (sulfated glycosaminoglycan) content (DMMB assay) after 21 days, which was confirmed by histological staining of Alcian blue and by immunostaining of Aggrecan. Experimental data on mechanotransduction and long-term studies on the beneficial effects of combined perfusion and different mechanical loading patterns on chondrocyte seeded scaffolds will be published separately.  相似文献   

3.
We have developed a bioreactor vessel design which has the advantages of simplicity and ease of assembly and disassembly, and with the appropriately determined flow rate, even allows for a scaffold to be suspended freely regardless of its weight. This article reports our experimental and numerical investigations to evaluate the performance of a newly developed non-perfusion conical bioreactor by visualizing the flow through scaffolds with 45 degrees and 90 degrees fiber lay down patterns. The experiments were conducted at the Reynolds numbers (Re) 121, 170, and 218 based on the local velocity and width of scaffolds. The flow fields were captured using short-time exposures of 60 microm particles suspended in the bioreactor and illuminated using a thin laser sheet. The effects of scaffold fiber lay down pattern and Reynolds number were obtained and correspondingly compared to results obtained from a computational fluid dynamics (CFD) software package. The objectives of this article are twofold: to investigate the hypothesis that there may be an insufficient exchange of medium within the interior of the scaffold when using our non-perfusion bioreactor, and second, to compare the flows within and around scaffolds of 45 degrees and 90 degrees fiber lay down patterns. Scaffold porosity was also found to influence flow patterns. It was therefore shown that fluidic transport could be achieved within scaffolds with our bioreactor design, being a non-perfusion vessel. Fluid velocities were generally same of the same or one order lower in magnitude as compared to the inlet flow velocity. Additionally, the 90 degrees fiber lay down pattern scaffold was found to allow for slightly higher fluid velocities within, as compared to the 45 degrees fiber lay down pattern scaffold. This was due to the architecture and pore arrangement of the 90 degrees fiber lay down pattern scaffold, which allows for fluid to flow directly through (channel-like flow).  相似文献   

4.
Although the ability to regenerate is evident in the nervous system, lesioned neurites are unable to cross gaps in neuronal pathways. In order to bridge gaps, guiding cues are essential to direct neurite regrowth. To overcome many of the shortcomings of polymer-based nerve guides, we developed a bioresorbable nerve guide composed of a novel trimethylene carbonate-caprolacton block copolymer (TMC-CL). Pore formation was controlled by using special solvent/precipitation media compositions in combination with the pore forming agent poly ethylene glycol (PEG). NMR spectroscopy, shear force-, compression-, and permeation assays were used for conduit characterization. The polymer conduit has a semipermeable wall with submicron pores to allow free metabolite/drug exchange. In order to investigate the principle of temporally controlled expression of therapeutic proteins in nerve guides, Neuro-2a cells were genetically engineered to express the reporter gene product green fluorescent protein (GFP) under the control of the Tet-On system. When these transduced cells were encapsulated in nerve guides, GFP expression could be induced for days by adding the antibiotic tetracycline derivative doxycycline to the nerve guide environment. Furthermore, encapsulated dorsal root ganglia (DRG) produced long neurites in vitro. In subsequent in vivo experiments, nerve guides filled with Schwann cells (SC) were implanted into lesioned spinal cords of adult rats. Regeneration of spinal cord axons into nerve guides was promoted by co-implanted Schwann cells. The data suggest that the novel TMC-CL nerve guides provide a promising tool for neuroregeneration.  相似文献   

5.
6.
Gel‐matrix culture environments provide tissue engineering scaffolds and cues that guide cell differentiation. For many cellular therapy applications such as for the production of islet‐like clusters to treat Type 1 diabetes, the need for large‐scale production can be anticipated. The throughput of the commonly used nozzle‐based devices for cell encapsulation is limited by the rate of droplet formation to ~0.5 L/h. This work describes a novel process for larger‐scale batch immobilization of mammalian cells in alginate‐filled hollow fiber bioreactors (AHFBRs). A methodology was developed whereby (1) alginate obstruction of the intra‐capillary space medium flow was negligible, (2) extra‐capillary alginate gelling was complete and (3) 83 ± 4% of the cells seeded and immobilized were recovered from the bioreactor. Chinese hamster ovary (CHO) cells were used as a model aggregate‐forming cell line that grew from mostly single cells to pancreatic islet‐sized spheroids in 8 days of AHFBR culture. CHO cell growth and metabolic rates in the AHFBR were comparable to small‐scale alginate slab controls. Then, the process was applied successfully to the culture of primary neonatal pancreatic porcine cells, without significant differences in cell viability compared with slab controls. As expected, alginate‐immobilized culture in the AHFBR increased the insulin content of these cells compared with suspension culture. The AHFBR process could be refined by adding matrix components or adapted to other reversible gels and cell types, providing a practical means for gel‐matrix assisted cultures for cellular therapy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

7.
Controlling environmental conditions, such as mechanical stimuli, is critical for directing cells into functional tissue. This study reports on the development of a bioreactor capable of controlling the mechanical environment and continuously measuring force‐displacement in engineered tissue. The bioreactor was built from off the shelf components, modified off the shelf components, and easily reproducible custom built parts to facilitate ease of setup, reproducibility and experimental flexibility. A T‐flask was modified to allow for four tissue samples, mechanical actuation via a LabView controlled stepper motor and transduction of force from inside the T‐flask to an external sensor. In vitro bench top testing with instrumentation springs and tissue culture experiments were performed to validate system performance. Force sensors were highly linear (R2 > 0.998) and able to maintain force readings for extended periods of time. Tissue culture experiments involved cyclic loading of polyurethane scaffolds seeded with and without (control) human foreskin fibroblasts for 8 h/day for 14 days. After supplementation with TGF‐β, tissue constructs showed an increase in stiffness between consecutive days and from the acellular controls. These experiments confirmed the ability of the bioreactor to distinguish experimental groups and monitor tissue stiffness during tissue development. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

8.
This report describes a new approach for fabricating microchannels within three-dimensional electrospun constructs. These key features serve to mimic the fascicular architecture and fibrous extracellular matrix found in native nerve. Both electrospun fibers and multi-channeled structure nerve guides have become areas of increasing interest for their beneficial roles in nerve repair. However, to the best of our knowledge, this is the first report of a guide that incorporates both. Multiple parallel channels provide a greater number of defined paths and increased surface area compared to cylindrical guides. Additionally, the fibrous nature of electrospun fibers permits better mass transport than solid-walled constructs. The flexible fabrication scheme allows tailoring of nerve guide parameters such as channel diameters ranging from 33 to 176 μm and various wall thicknesses. Channel and fiber structures were assessed by optical and electron microscope images. Geometric calculations estimated a porosity of over 85% for these guides with 16% or less from the channels. In vitro culture with Schwann cells demonstrated cellular infiltration into channels with restricted migration between fibers. Finally, cell proliferation and survival throughout the guide indicates that this design warrants future in vivo examination.  相似文献   

9.
Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three‐dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041–2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

10.
Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single-step bioprocess for ES cell-derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 +/- 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell-derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell-derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield.  相似文献   

11.
刘经伟  王健  王琳 《生物工程学报》2023,39(10):4057-4074
人工神经导管(nerve guidance conduits,NGCs)作为一种合成的神经移植物,为神经再生提供结构与营养支持。理想的神经导管对生物相容性、机械强度、拓扑结构和导电性等均有较高要求,因此需对神经导管的设计不断改进并建立更完善的周围神经再生策略,以期满足临床需求。虽然NGCs在周围神经损伤的治疗中已经取得一定进展,但其对长距离神经离断伤的结构与功能修复仍不理想。本文分别从原材料选择、结构设计、治疗因子搭载及自供电元件集成4个方面对神经导管的设计进行综述,归纳总结NGCs在周围神经损伤治疗中的研究进展,以期推动NGCs的迭代更新与临床转化。  相似文献   

12.
A microfabricated array bioreactor for perfused 3D liver culture   总被引:9,自引:0,他引:9  
We describe the design, fabrication, and performance of a bioreactor that enables both morphogenesis of 3D tissue structures under continuous perfusion and repeated in situ observation by light microscopy. Three-dimensional scaffolds were created by deep reactive ion etching of silicon wafers to create an array of channels (through-holes) with cell-adhesive walls. Scaffolds were combined with a cell-retaining filter and support in a reactor housing designed to deliver a continuous perfusate across the top of the array and through the 3D tissue mass in each channel. Reactor dimensions were constructed so that perfusate flow rates meet estimated values of cellular oxygen demands while providing fluid shear stress at or below a physiological range (<2 dyne cm(2)), as determined by comparison of numerical models of reactor fluid flow patterns to literature values of physiological shear stresses. We studied the behavior of primary rat hepatocytes seeded into the reactors and cultured for up to 2 weeks, and found that cells seeded into the channels rearranged extensively to form tissue like structures and remained viable throughout the culture period. We further observed that preaggregation of the cells into spheroidal structures prior to seeding improved the morphogenesis of tissue structure and maintenance of viability. We also demonstrate repeated in situ imaging of tissue structure and function using two-photon microscopy.  相似文献   

13.
The physical environment of myocardium, featuring excitation-contraction coupling, constant and efficient provision of nutrient/oxygen and delicate integration of cardiomyocytes and supporting cell population (fibroblasts, endothelial cells), is one of the most complex systems in human body. Numerous studies have demonstrated the significance of physical stimulation in cardiac cell physiology, including the maintenance of contractile function in cardiomyocytes,1 cell alignment and extracellular matrix secretion in fibroblasts and endothelial cells.2,3 In effort to reconstruct the physical environment found in the cardiac niche for routine cell culture use, we have devised a bioreactor system to account for three major forms of physical stimuli, namely, cyclic stretch, electrical stimulation and fluid perfusion.4  相似文献   

14.
This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real‐time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48‐h culture period. Cells were uniformly dispersed within the 14.40 mm × 17.46 mm × 6.35 mm chamber. Cells suspended in 6.35‐mm thick gels and cultured in a traditional CO2 incubator were found to be round and dead. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. Biotechnol. Bioeng. 2009; 104: 1215–1223. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
The experimental study has assessed a novel membrane bioreactor for mammalian cell culture. In the absence of a gas phase, the key features of cell damage associated with laminar and turbulent flow have been identified. The bioreactor employs a dimpled membrane in order to enhance transverse mixing in a narrow channel, but a fall in viable cell density has been observed at Reynolds numbers above Re = 83. In the laminar flow regime wall shear is the critical mechanism and an accurate calculation of shear rate in a complex channel has been achieved using the Reynolds analogy. Flow generating a wall shear rate in excess of 3000 s(-1) has been shown to cause damage. Power dissipation measurements have been used to distinguish between laminar and turbulent flow and also to predict Kolmogorov eddy lengths. An additional turbulent bulk stress damage mechanism at higher Reynolds numbers (Re > 250) results in a very rapid fall in viable cell density.  相似文献   

16.
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue.  相似文献   

17.
By favoring cell proliferation and differentiation, perfusion bioreactors proved efficient at optimizing cell culture. The aim of this study was to quantify cell proliferation within a perfusion bioreactor and correlate it to the wall shear stress (WSS) distribution by combining 3-D imaging and computational fluid dynamics simulations.NIH-3T3 fibroblasts were cultured onto a scaffold model made of impermeable polyacetal spheres or Polydimethylsiloxane cubes. After 1, 2, and 3 weeks of culture, constructs were analyzed by micro-computed tomography (μCT) and quantification of cell proliferation was assessed. After 3 weeks, the volume of cells was found four times higher in the stacking of spheres than in the stacking of cube.3D-μCT reconstruction of bioreactors was used as input for the numerical simulations. Using a lattice-Boltzmann method, we simulated the fluid flow within the bioreactors. We retrieved the WSS distribution (PDF) on the scaffolds surface at the beginning of cultivation and correlated this distribution to the local presence of cells after 3 weeks of cultivation. We found that the WSS distributions strongly differ between spheres and cubes even if the porosity and the specific wetted area of the stackings were very similar. The PDF is narrower and the mean WSS is lower for cubes (11 mPa) than for spheres (20 mPa). For the stacking of spheres, the relative occupancy of the surface sites by cells is maximal when WSS is greater than 20 mPa. For cubes, the relative occupancy is maximal when the WSS is lower than 10 mPa. The discrepancies between spheres and cubes are attributed to the more numerous sites in stacking of spheres that may induce 3-D (multi-layered) proliferation.  相似文献   

18.
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo.  相似文献   

19.
Increased rate of chondrocyte aggregation in a wavy-walled bioreactor   总被引:2,自引:0,他引:2  
A novel wavy-walled bioreactor designed to enhance mixing at controlled shear stress levels was used to culture chondrocytes in suspension. Chondrocyte aggregation in suspensions mixed at 30, 50, and 80 rpm was characterized in the wavy-walled bioreactor and compared with that in conventional smooth-walled and baffled-walled spinner flask bioreactors. Aggregation was characterized in terms of the percentage of cells that aggregated over time, and aggregate size changes over time. The kinetics of chondrocyte aggregation observed in the bioreactors was composed of two phases: early aggregation between 0 and 2 h of culture, and late aggregation between 3 and 24 h of culture. At 50 rpm, the kinetics of early aggregation in the wavy-walled bioreactor was approximately 25% and 65% faster, respectively, than those in the smooth-walled and baffled-walled spinner flask bioreactors. During the late aggregation phase, the kinetics of aggregation in the wavy-walled bioreactor were approximately 45% and 65% faster, respectively, than in the smooth-walled and baffled-walled spinner flasks. The observed improved kinetics of chondrocyte aggregation was obtained at no cost to the cell survival rate. Results of computerized image analysis suggest that chondrocyte aggregation occurred initially by the formation of new aggregates via cell-cell interactions and later by the joining of small aggregates into larger cell clumps. Aggregates appeared to grow for only a couple of hours in culture before reaching a steady size, possibly determined by limitations imposed by the hydrodynamic environment. These results suggest that the novel geometry of the wavy-walled bioreactor generates a hydrodynamic environment distinct from those traditionally used to culture engineered cartilage. Such differences may be useful in studies aimed at distinguishing the effects of the hydrodynamic environment on tissue-engineered cartilage. Characterizing the wavy-walled bioreactor's hydrodynamic environment and its effects on cartilage cell/tissue culture can help establish direct relationships between hydrodynamic forces and engineered tissue properties.  相似文献   

20.
Achieving sufficient functional properties prior to implantation remains a significant challenge for the development of tissue engineered cartilage. Many studies have shown chondrocytes respond well to various mechanical stimuli, resulting in the development of bioreactors capable of transmitting forces to articular cartilage in vitro. In this study, we describe the production of sizeable, tissue engineered cartilage using a novel scaffold-free approach, and determine the effect of perfusion and mechanical stimulation from a C9-x Cartigen bioreactor on the properties of the tissue engineered cartilage. We created sizable tissue engineered cartilage from porcine chondrocytes using a scaffold-free approach by centrifuging a high-density chondrocyte cell-suspension onto an agarose layer in a 50 mL tube. The gross and histological appearances, biochemical content, and mechanical properties of constructs cultured in the bioreactor for 4 weeks were compared to constructs cultured statically. Mechanical properties were determined from unconfined uniaxial compression tests. Constructs cultured in the bioreactor exhibited an increase in total GAG content, equilibrium compressive modulus, and dynamic modulus versus static constructs. Our study demonstrates the C9-x CartiGen bioreactor is able to enhance the biomechanical and biochemical properties of scaffold-free tissue engineered cartilage; however, no additional enhancement was seen between loaded and perfused groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号