首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sensitivity of a conceptual model of a foam emulsion bioreactor (FEBR) used for the control of toluene vapors in air was examined. Model parametric sensitivity studies showed which parameters affect the removal of toluene (as model pollutant) in the FEBR the most significantly, and enabled definition of the limits of the process. Detailed examination of the results indicated that the process is highly complex and that both mass transfer and kinetic limitations can coexist in the bioreactor system. These results will help with the optimization of the design and operation of FEBRs.  相似文献   

2.
A new type of bioreactor for air pollution control has been developed. The new process relies on an organic-phase emulsion and actively growing pollutant-degrading microorganisms, made into a foam with the air being treated. This new reactor is referred to as a foamed emulsion bioreactor (FEBR). As there is no packing in the reactor, the FEBR is not subject to clogging. Mathematical modeling of the process and proof of concept using a laboratory prototype revealed that the foamed emulsion bioreactor greatly surpasses the performance of existing gas-phase bioreactors. Experimental results showed a toluene elimination capacity as high as 285 g(toluene) m(-3) (reactor) h(-1) with a removal efficiency of 95% at a gas residence time of 15 s and a toluene inlet concentration of 1-1.3 g x m(-3). Oxygen limited the reactor performance at toluene concentration above about 0.7-1.0 g x m(-3); consequently, performance was significantly improved when pure oxygen was added to the contaminated air. The elimination capacity increased from 204 to 408 g x m(-3) h(-1) with >77% toluene removal at toluene inlet concentrations of 2-2.2 g x m(-3). Overall, the results show that the performance of the FEBR far exceeds that of currently used bioreactors for air pollution control.  相似文献   

3.
Continuous operation of a new bioreactor for air pollution control called the foamed emulsion bioreactor (FEBR) has been investigated. The effect of several liquid feeding strategies was explored. The FEBR exhibited high and steady toluene removal performance (removal efficiency of 89%-94%, elimination capacity of 214-226 g/m3h at toluene inlet concentration of 1 g/m3) for up to 360 h, when 20% of the culture was replaced every 24 h by a nutrient solution containing 4 g/L of potassium nitrate as a nitrogen source. This feeding mode supported a high cell activity measured as INT reduction potential and active cell growth without being subject to nitrogen limitation. In comparison, operating the FEBR with the liquid in a closed loop (i.e., batch) resulted in a significant decrease of both the removal efficiency of toluene and INT reduction activity. Operation with feeding active cells resulted in stable and effective treatment, but would require a significant effort for mass culture preparation. Therefore, the continuous process with periodically feeding nutrients was found to be the most practical and effective operating mode. It also allows for stable operation, as was shown during removal of low concentration of toluene or after pollutant starvation. Throughout the study, INT reduction measurements provided insight into the process. INT reduction activity data proved that under normal operating conditions, the FEBR performance was limited by both the kinetics and by mass transfer. Overall, the results illustrate that engineered gas-phase bioreactors can potentially be more effective than conventional biofilters and biotrickling filters for the treatment of air pollutants such as toluene.  相似文献   

4.
介绍了当前用于植物细胞培养的生物反应器类型(搅拌式、气升式、转鼓式和鼓泡式生物反应器)及其特点,对各种类型的反应器进行了比较与选择;并进一步介绍了植物细胞固定化培养,提出今后利用反应器大规模培养植物细胞的发展研究方向。  相似文献   

5.
In this paper the well-known problem of optimal input design is considered. In particular, the focus is on input design for the estimation of kinetic parameters in bioreactors. The problem is formulated as follows: given the model structure (f,g), which is assumed to be affine in the input, and the specific parameter of interest theta;(k) find a feedback law that maximizes the sensitivity of the model output to the parameter under different flow conditions in the bioreactor and, possibly, minimize the input or state costs. Analytical solutions to these problems are presented. As an example a bioreactor with a biomass that grows according to the well-known Monod kinetics is considered.  相似文献   

6.
This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression coefficient values (R(2)) for the test data set. The results obtained from this modelling work can be useful for obtaining important relationships between different bioreactor parameters and for estimating their safe operating regimes.  相似文献   

7.
Foam disruption by agitation—the stirring as foam disruption (SAFD) technique—was scaled up to pilot and production scale using Rushton turbines and an up-pumping hydrofoil impeller, the Scaba 3SHP1. The dominating mechanism behind SAFD—foam entrainment—was also demonstrated at production scale. The mechanistic model for SAFD defines a fictitious liquid velocity generated by the (upper) impeller near the dispersion surface, which is correlated with complete foam disruption. This model proved to be scalable, thus enabling the model to be used for the design of SAFD applications. Axial upward pumping impellers appeared to be more effective with respect to SAFD than Rushton turbines, as demonstrated by retrofitting a 12,000 l bioreactor, i.e. the triple Rushton configuration was compared with a mixed impeller configuration from Scaba with a 20% lower ungassed power draw. The retrofitted impeller configuration allowed 10% more broth without risking excessive foaming. In this way a substantial increase in the volumetric productivity of the bioreactor was achieved. Design recommendations for the application of SAFD are given in this paper. Using these recommendations for the design of a 30,000 l scale bioreactor, almost foamless Escherichia coli fermentations were realised. Electronic Publication  相似文献   

8.
《Process Biochemistry》2007,42(4):554-560
In a previous study, a hybrid bioreactor comprised of a bubble column bioreactor section and a biofilter section was successfully applied to the treatment of benzene. In order to design and optimize the bioreactor system for actual use in the field, simple but effective mathematical models of the two-stage system were required. Since the liquid phase in the bubble column bioreactor section was well mixed, a CSTR (continuously stirred tank reactor) model was adopted for this section, with benzene removal by both air stripping and biodegradation being considered in the model equations. The gaseous benzene degradation in the biofilter section was described using a PFR (plug flow reactor) model. The combined model was validated through independent experiments, and the simulation results were in a good agreement with measured data.  相似文献   

9.
《Process Biochemistry》1999,34(3):281-288
A novel hybrid bioreactor was designed to remove volatile organic compounds from wastewater and its performance was investigated. The bioreactor was composed of a biofilter section and a bubble column bioreactor section. Benzene was used as a model compound and the influent benzene was removed by immobilized cells in a bubble column bioreactor. Gas phase benzene stripped by air injection was removed in a biofilter. When the superficial air flow rate was 21.1 m h−1 (0.76 min of residence time in a biofilter), up to 2.2 ppm of benzene in gas phase was removed completely in a biofilter and the maximum removal rate was 4.71 mg day−1 cm−3. The concentration profile of benzene along the biofilter column was dependent on the superficial air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operation parameters for the hybrid bioreactor. By manipulating these operational parameters, the removal efficiency and capacity of the hybrid bioreactor could be enhanced. The organic load on the hybrid bioreactor could be shared by the biofilter and bubble column bioreactors and the fluctuation of load on the hybrid bioreactor could be absorbed by changing the distribution of benzene between biofilter and bubble column bioreactors. The maximum removal capacity of the hybrid bioreactor in the experimental range was obtained when the biofilter took 50.3% of influent benzene while 100% of removal efficiency was achieved when the biofilter took 72.3% of influent benzene.  相似文献   

10.
In this paper, an efficient scheme for on-line optimization of a recombinant product in a fed-batch bioreactor is presented. This scheme is based on the parametrization of the system states and the elimination of a subset of the dynamic equations in the mathematical model of the fed-batch bioreactor. The fed-batch bioreactor considered here involves the production of chloramphenicol acetyltransferase (CAT) in a genetically modified E. coli. The optimal inducer and the glucose feed rates are obtained using the proposed optimization approach. This approach is compared with the traditional optimization approach, where all the states and the manipulated variables are parametrized. The approach presented in this paper results in a 5-fold improvement in the computational time for the recombinant product optimization. The optimization technique is employed in an on-line optimization scheme, when parametric drift and a disturbance in the manipulated variable is present. Feedback from the process is introduced through resetting the initial conditions of the model and through an observer for estimating the time varying parameter. The simulation results indicated improvement in the amount of product formed, when the optimal profile is regenerated during the course of the batch.  相似文献   

11.
Natural polyelectrolytes are suitable coagulants for the treatment of industrial and minicipal wastewaters because they are safe and have environmental benefits. Chitosan, a natural cationic polyelectrolyte, and other similar coagulants were used in the treatment of an olive oil water suspension as a model for the processing wastewater. The effect of chitosan, starch, alum and ferric chloride on the coagulation of oil droplets were determined by the jar test apparatus and turbidometric measurements. Olive oil emulsion samples were prepared by the use of surface active agents and other agents that could form stable oil water emulsions. The effect of parameters such as pH, ionic strength and optimum dosage of the coagulants were determined in the jar test experiments. Following the jar experiments, with the optimum concentration of the suitable coagulant, the emulsions were placed in an induced air flotation (IAF) cell to separate the coagulated oil droplets from solution. In the air flotation experiments, the effect of temperature, surfactant concentration and air flowrate were determined on the decrease of turbidity and COD of the emulsion samples. In the jar experiments, chitosan and alum used together at concentrations of 15 and 25 ppm, respectively, at pH 6 produced the lowest turbidity values. In the air flotation experiments, a concentration of 100 ppm of chitosan, an air flowrate of 3 l/min, aeration time of 45 s, temperature of 20 degrees C and pH 6 produced optimum levels. At optimum conditions of coagulation and flotation stages, the COD of the olive oil emulsion could be reduced by 95%.  相似文献   

12.
Scale-up of bioreactors has the intrinsic difficulty of establishing a reliable relationship among physical parameters involved in the design of the new bioreactor and the physiology of the cultured cells. This is more critical in those cases where a more complex operation of the bioreactor is needed, such as in photobioreactors. A key issue in the operation of photobioreactors is establishing a quantification for the interaction between external illumination, internal light distribution and cell growth. In this paper an approach to the scale-up of a photobioreactor for the culture of Spirulina platensis, based on a mathematical model describing this interaction, and the operation of a previous reactor 10 times smaller is presented. The paper describes the approach followed in the scale-up, the analysis of different design constraints, the physical realization of the new bioreactor design, innovative use of plastic material walls to improve reactor safety, and finally the corroboration of its satisfactory operation.  相似文献   

13.
The hydrodynamics of biotechnological processes is complex. So far, few studies were made with bioreactors of the airlift type with an enlarged degassing zone.In this work, the influence of solids loading, solids specific gravity and draught tube dimensions on mixing and circulation times and critical air flow rate for an internal loop airlift bioreactor with an enlarged sedimentation/degassing zone is studied.The results indicate that the critical air flow rate as well as the mixing time increase with an increase in solids loading in the bioreactor. Circulation time presents a maximum for a solids load between 5 and 10% (v/v). It is also shown that small variations in solids specific gravity, for values close to that of the liquid, have a significant influence on the critical air flow rate and on the mixing time.An optimal (minimal) value for the circulation time and for the critical air flow rate was obtained for a riser to down comer diameter ratio of 0.46. The minimum mixing time was obtained for a riser to down comer height ratio of 0.80.This work was supported by J.N.I.C.T. (Junta Nacional de Investigação Cientifica e Tecnológica).  相似文献   

14.
The oxygenation capabilities of a new generation three phase – two region 1200 l bioreactor employed for the cultivation of anchorage dependent animal cells were investigated experimentally. A mathematical model has also been developed that explains qualitatively the observed oxygenation characteristics. This type of bioreactor, that uses microcarrier support particles, has two distinct mesh-separated regions so that the air bubbles in the oxygenation region do not come into contact with the microcarriers in the cell (bubble-free) region. Implications on achievable maximum cell densities are also discussed.  相似文献   

15.
Process analytical technology (PAT) tools such as Raman Spectroscopy have become established tools for real time measurement of CHO cell bioreactor process variables and are aligned with the QbD approach to manufacturing. These tools can have a significant impact on process development if adopted early, creating an end-to-end PAT/QbD focused process. This study assessed the impact of Raman based feedback control on early and late phase development bioreactors by using a Raman based PLS model and PAT management system to control glucose in two CHO cell line bioreactor processes. The impact was then compared to bioreactor processes which used manual bolus fed methods for glucose feed delivery. Process improvements were observed in terms of overall bioreactor health, product output and product quality. Raman controlled batches for Cell Line 1 showed a reduction in glycation of 43.4% and 57.9%, respectively. Cell Line 2 batches with Raman based feedback control showed an improved growth profile with higher VCD and viability and a resulting 25% increase in overall product titer with an improved glycation profile. The results presented here demonstrate that Raman spectroscopy can be used in both early and late-stage process development and design for consistent and controlled glucose feed delivery.  相似文献   

16.
Our overall objective is to develop a cell culture analogue bioreactor (CCA) that can be used together with a corresponding physiologically based pharmacokinetic model (PBPK) to evaluate molecular mechanisms of toxicity. The PBPK is a mathematical model that divides the body into compartments representing organs, integrating the kinetic, thermodynamic, and anatomical parameters of the animal. The CCA bioreactor is a physical replica of the PBPK; where the PBPK specifies organs, the CCA bioreactor contains compartments with a corresponding cell type that mimics some of the characteristic metabolism of that organ. The device is a continuous, dynamic system composed of multiple cell types that interact through a common circulating cell culture medium. The CCA bioreactor and the model can be coupled to evaluate the plausibility of the molecular mechanism that is input into the model. This paper focuses on the design, development, and characterization of a CCA bioreactor to be used in naphthalene dose response studies. A CCA bioreactor prototype developed previously is improved upon by culturing the cells on microcarrier beads. Microcarrier beads with cells attached can form packed beds with cell culture medium perfusing the beds. In this study, two packed beds of cells, one with L2 cells (rat lung) and one with H4IIE cells (rat hepatoma), are linked in a physiologically relevant arrangement by a common recirculating cell culture medium. Studies of this CCA bioreactor presented here include mixing profiles, effect of reactor environment on cell viability and intracellular glutathione, naphthalene distribution profile, and initial naphthalene dosing studies. Unlike the prototype system there is no detectable response to naphthalene addition; in a companion paper we show that this discrepancy can be explained by differences in liquid residence times in the organ compartments. The perfusion reactor design is shown to have significant operating improvements over prototype designs.  相似文献   

17.
Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 163-169, 1997.  相似文献   

18.
This communication proposes a mechanistic modification to a recently published method for analyzing oxygen mass transfer in two-phase partitioning bioreactors (Nielsen et al., 2003), and corrects an oversight in that paper. The newly proposed modification replaces the earlier empirical approach, which treated the two liquid phases as a single, homogeneous liquid phase, with a two-phase mass transfer model of greater fundamental rigor. Additionally, newly developed empirical models are presented that predict the mass transfer coefficient of oxygen absorption in both aqueous medium and an organic phase (n-hexadecane) as a function of bioreactor operating conditions. Experimental values and theoretical predictions of mass transfer coefficients in two-phase dispersions, k(L)a(TP), are compared. The revised approach more clearly demonstrates the potential for oxygen mass transfer enhancement by organic phase addition, one of the motivations for employing a distinct second phase in a partitioning bioreactor.  相似文献   

19.
The goals of this work were to test the feasibility of a continuous plug-flow (PF) bioreactor and to compare the growth in the PF bioreactor to that in a batch bioreactor. A culture of Pseudomonas putida was pumped through a tube made of Teflon with varying residence times. The culture was aerated by pumping of air simultaneously with liquid medium to provide air bubbles along the tubular culture. When the residence time in the PF bioreactor was greater than the time needed to reach the stationary phase in batch mode, the maximum biomass density reached in PF mode was the same as the maximum density reached in the batch bioreactor, and benzoate (the only carbon and energy source) was completely consumed. The drawbacks for practical application of PF were found to be fluctuations of cell concentration in the outflow cultural liquid due to cell aggregation, significant cell adhesion to the inner wall of Teflon tubing, and inadequate aeration.  相似文献   

20.
This paper uses a multikinetic approach to predict gluconic acid (GA) production performance in a 4.5 L airlift bioreactor (ALBR). The mathematical model consists of a set of simultaneous firstorder ordinary differential equations obtained from material balances of cell biomass, GA, glucose, and dissolved oxygen. Multikinetic models, namely, logistic and contois equations constitute kinetic part of the main model. The main model also takes into account the hydrodynamic and mass transfer parameters. These equations were solved using ODE solver of MATLAB v6.5 software. The mathematical model was validated with the experimental data available in the literature and is used to predict the effect of change in initial biomass and air sparging rate on the GA production. It is concluded that the mathematical model incorporated with multikinetic approach would be more efficient to predict the change in operating parameters on overall bioprocess of GA production in an ALBR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号