首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electricity production by Geobacter sulfurreducens attached to electrodes   总被引:27,自引:0,他引:27  
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 micro M), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 micro mol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (E(o)' =+0.37 V). The production of current in microbial fuel cell (65 mA/m(2) of electrode surface) or poised-potential (163 to 1,143 mA/m(2)) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of conversion of organic electron donor to electricity was significantly higher than in previously described microbial fuel cells. These results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.  相似文献   

2.
Graphite electrodes as electron donors for anaerobic respiration   总被引:8,自引:0,他引:8  
It has been demonstrated previously that Geobacter species can transfer electrons directly to electrodes. In order to determine whether electrodes could serve as electron donors for microbial respiration, enrichment cultures were established from a sediment inoculum with a potentiostat-poised graphite electrode as the sole electron donor and nitrate as the electron acceptor. Nitrate was reduced to nitrite with the consumption of electrical current. The stoichiometry of electron and nitrate consumption and nitrite accumulation were consistent with the electrode serving as the sole electron donor for nitrate reduction. Analysis of 16 rRNA gene sequences demonstrated that the electrodes supplied with current were specifically enriched in microorganisms with sequences most closely related to the sequences of known Geobacter species. A pure culture of Geobacter metallireducens was shown to reduce nitrate to nitrite with the electrode as the sole electron donor with the expected stoichiometry of electron consumption. Cells attached to the electrode appeared to be responsible for the nitrate reduction. Attached cells of Geobacter sulfurreducens reduced fumarate to succinate with the electrode as an electron donor. These results demonstrate for the first time that electrodes may serve as a direct electron donor for anaerobic respiration. This finding has implications for the harvesting of electricity from anaerobic sediments and the bioremediation of oxidized contaminants.  相似文献   

3.
Transposon insertions in Geobacter sulfurreducens GSU1501, part of an ATP-dependent exporter within an operon of polysaccharide biosynthesis genes, were previously shown to eliminate insoluble Fe(III) reduction and use of an electrode as an electron acceptor. Replacement of GSU1501 with a kanamycin resistance cassette produced a similarly defective mutant, which could be partially complemented by expression of GSU1500 to GSU1505 in trans. The Δ1501 mutant demonstrated limited cell-cell agglutination, enhanced attachment to negatively charged surfaces, and poor attachment to positively charged poly-d-lysine- or Fe(III)-coated surfaces. Wild-type and mutant cells attached to graphite electrodes, but when electrodes were poised at an oxidizing potential inducing a positive surface charge (+0.24 V versus the standard hydrogen electrode [SHE]), Δ1501 mutant cells detached. Scanning electron microscopy revealed fibrils surrounding wild-type G. sulfurreducens which were absent from the Δ1501 mutant. Similar amounts of type IV pili and pilus-associated cytochromes were detected on both cell types, but shearing released a stable matrix of c-type cytochromes and other proteins bound to polysaccharides. The matrix from the mutant contained 60% less sugar and was nearly devoid of c-type cytochromes such as OmcZ. The addition of wild-type extracellular matrix to Δ1501 cultures restored agglutination and Fe(III) reduction. The polysaccharide binding dye Congo red preferentially bound wild-type cells and extracellular matrix material over mutant cells, and Congo red inhibited agglutination and Fe(III) reduction by wild-type cells. These results demonstrate a crucial role for the xap (extracellular anchoring polysaccharide) locus in metal oxide attachment, cell-cell agglutination, and localization of essential cytochromes beyond the Geobacter outer membrane.  相似文献   

4.
The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (-0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.  相似文献   

5.
A novel fluorescence technique for monitoring the redox status of c-type cytochromes in Geobacter sulfurreducens was developed in order to evaluate the capacity of these extracytoplasmic cytochromes to store electrons during periods in which an external electron acceptor is not available. When intact cells in which the cytochromes were in a reduced state were excited at a wavelength of 350 nm, they fluoresced with maxima at 402 and 437 nm. Oxidation of the cytochromes resulted in a loss of fluorescence. This method was much more sensitive than the traditional approach of detecting c-type cytochromes via visible light absorbance. Furthermore, fluorescence of reduced cytochromes in individual cells could be detected via fluorescence microscopy, and the cytochromes in a G. sulfurreducens biofilm, remotely excited with an optical fibre, could be detected at distances as far as 5 cm. Fluorescence analysis of cytochrome oxidation and reduction of the external electron acceptor, anthraquinone-2,6-disulfonate, suggested that the extracytoplasmic cytochromes of G. sulfurreducens could store approximately 10(7) electrons per cell. Independent analysis of the haem content of the cells determined from analysis of incorporation of (55)Fe into cytochromes provided a similar estimate of cytochrome electron-storage capacity. This electron-storage capacity could, in the absence of an external electron acceptor, permit continued electron transfer across the inner membrane sufficient to supply the maintenance energy requirements for G. sulfurreducens for up to 8 min or enough proton motive force to power flagella motors for G. sulfurreducens motility. The fluorescence approach described here provides a sensitive method for evaluating the redox status of Geobacter species in culture and/or its environments. Furthermore, these results suggest that the periplasmic and outer-membrane cytochromes of Geobacter species act as capacitors, allowing continued electron transport, and thus viability and motility, for Geobacter species as they move between heterogeneously dispersed Fe(III) oxides during growth in the subsurface.  相似文献   

6.
The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.  相似文献   

7.
Dissimilatory metal reducer Geobacter sulfurreducens can mediate redox processes through extracellular electron transfer and exhibit potential-dependent electrochemical activity in biofilm. Understanding the microbial acclimation to potential is of critical importance for developing robust electrochemically active biofilms and facilitating their environmental, geochemical, and energy applications. In this study, the metabolism and redox conduction behaviors of G. sulfurreducens biofilms developed at different potentials were explored. We found that electrochemical acclimation occurred at the initial hours of polarizing G. sulfurreducens cells to the potentials. Two mechanisms of acclimation were found, depending on the polarizing potential. In the mature biofilms, a low level of biosynthesis and a high level of catabolism were maintained at +0.2 V versus standard hydrogen electrode (SHE). The opposite results were observed at potentials higher than or equal to +0.4 V versus SHE. The potential also regulated the constitution of the electron transfer network by synthesizing more extracellular cytochrome c such as OmcS at 0.0 and +0.2 V and exhibited a better conductivity. These findings provide reasonable explanations for the mechanism governing the electrochemical respiration and activity in G. sulfurreducens biofilms.  相似文献   

8.
The possibility that graphite electrodes can serve as the direct electron donor for microbially catalyzed reductive dechlorination was investigated with Geobacter lovleyi. In an initial evaluation of whether G. lovleyi could interact electronically with graphite electrodes, cells were provided with acetate as the electron donor and an electrode as the sole electron acceptor. Current was produced at levels that were ca. 10-fold lower than those previously reported for Geobacter sulfurreducens under similar conditions, and G. lovleyi anode biofilms were correspondingly thinner. When an electrode poised at -300 mV (versus a standard hydrogen electrode) was provided as the electron donor, G. lovleyi effectively reduced fumarate to succinate. The stoichiometry of electrons consumed to succinate produced was 2:1, the ratio expected if the electrode served as the sole electron donor for fumarate reduction. G. lovleyi effectively reduced tetrachloroethene (PCE) to cis-dichloroethene with a poised electrode as the sole electron donor at rates comparable to those obtained when acetate serves as the electron donor. Cells were less abundant on the electrodes when the electrodes served as an electron donor than when they served as an electron acceptor. PCE was not reduced in controls without cells or when the current supply to cells was interrupted. These results demonstrate that G. lovleyi can use a poised electrode as a direct electron donor for reductive dechlorination of PCE. The ability to colocalize dechlorinating microorganisms with electrodes has several potential advantages for bioremediation of subsurface chlorinated contaminants, especially in source zones where electron donor delivery is challenging and often limits dechlorination.  相似文献   

9.
Formic acid is a highly energetic electron donor but it has previously resulted in low power densities in microbial fuel cells (MFCs). Three different set anode potentials (-0.30, -0.15, and +0.15 V; vs. a standard hydrogen electrode, SHE) were used to evaluate syntrophic interactions in bacterial communities for formic acid degradation relative to a non-controlled, high resistance system (1,000 Ω external resistance). No current was generated at -0.30 V, suggesting a lack of direct formic acid oxidation (standard reduction potential: -0.40 V). More positive potentials that allowed for acetic acid utilization all produced current, with the best performance at -0.15 V. The anode community in the -0.15 V reactor, based on 16S rDNA clone libraries, was 58% Geobacter sulfurreducens and 17% Acetobacterium, with lower proportions of these genera found in the other two MFCs. Acetic acid was detected in all MFCs suggesting that current generation by G. sulfurreducens was dependent on acetic acid production by Acetobacterium. When all MFCs were subsequently operated at an external resistance for maximum power production (100 Ω for MFCs originally set at -0.15 and +0.15 V; 150 Ω for the control), they produced similar power densities and exhibited the same midpoint potential of -0.15 V in first derivative cyclic voltammetry scans. All of the mixed communities converged to similar proportions of the two predominant genera (ca. 52% G. sulfurreducens and 22% Acetobacterium). These results show that syntrophic interactions can be enhanced through setting certain anode potentials, and that long-term performance produces stable and convergent communities.  相似文献   

10.
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 μM), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 μmol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (Eo′ =+0.37 V). The production of current in microbial fuel cell (65 mA/m2 of electrode surface) or poised-potential (163 to 1,143 mA/m2) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of conversion of organic electron donor to electricity was significantly higher than in previously described microbial fuel cells. These results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.  相似文献   

11.
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities.  相似文献   

12.
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.  相似文献   

13.
This paper summarizes the current knowledge of unsaturated organic acids in their role as terminal electron acceptors of anaerobic bacteria. The mechanisms and enzyme systems involved in the reduction of fumarate by Escherichia coli, Wolinella succinogenes, and some species of the genus Shewanella are considered. Particular attention is given to reduction of the double bond of the unnatural compound methacrylate by the sigma-proteobacterium Geobacter sulfurreducens Am-1. Soluble periplasmic flavocytochromes c, found in bacteria of the genera Shewanella and Geobacter, are involved in the hydration of fumarate (in Shewanella species) and methacrylate (in G. sulfurreducens Am-1). In E. coli and W. succinogenes, fumarate is reduced in cytosol by membrane-bound fumarate reductases. The prospects for research into organic acid reduction at double bonds in bacteria are discussed.  相似文献   

14.
In situ bioremediation of industrial chlorinated solvents, such as trichloroethene (TCE), is typically accomplished by providing an organic electron donor to naturally occurring dechlorinating populations. In the present study, we show that TCE dechlorinating bacteria can access the electrons required for TCE dechlorination directly from a negatively polarized (?450 mV vs. SHE) carbon paper electrode. In replicated batch experiments, a mixed dechlorinating culture, also containing Dehalococcoides spp., dechlorinated TCE to cis‐dichloroethene (cis‐DCE) and lower amounts of vinyl chloride (VC) and ethene using the polarized electrode as the sole electron donor. Conversely, neither VC nor ethene formation occurred when a pure culture of the electro‐active microorganism Geobacter lovleyi was used, under identical experimental conditions. Cyclic voltammetry tests, carried out on the filter‐sterilized supernatant of the mixed culture revealed the presence of a self‐produced redox mediator, exhibiting a midpoint potential of around ?400 mV (vs. SHE). This yet unidentified redox‐active molecule appeared to be involved in the extracellular electron transfer from the electrode to the dechlorinating bacteria. The ability of dechlorinating bacteria to use electrodes as electron donors opens new perspectives for the development of clean, versatile, and efficient bioremediation systems based on a controlled subsurface delivery of electrons in support of biodegradative metabolisms and provides further evidence on the possibility of using conductive materials to manipulate and control a range of microbial bioprocesses. Biotechnol. Bioeng. 2009;103: 85–91. © 2008 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.
Geobacter sulfurreducens exists in the subsurface and has been identified in sites contaminated with radioactive metals, consistent with its ability to reduce metals under anaerobic conditions. The natural state of organisms in the environment is one that lacks access to high concentrations of nutrients, namely electron donors and terminal electron acceptors (TEAs). Most studies have investigated G. sulfurreducens under high-nutrient conditions or have enriched for it in environmental systems via acetate amendments. We replicated the starvation state through long-term batch culture of G. sulfurreducens, where both electron donor and TEA were scarce. The growth curve revealed lag, log, stationary, death, and survival phases using acetate as electron donor and either fumarate or iron(III) citrate as TEA. In survival phase, G. sulfurreducens persisted at a constant cell count for as long as 23 months without replenishment of growth medium. Geobacter sulfurreducens demonstrated an ability to acquire a growth advantage in stationary-phase phenotype (GASP), with strains derived from subpopulations from death- or survival phase being able to out-compete mid-log-phase populations when co-cultured. The molecular basis for GASP was not because of any detectable mutation in the rpoS gene (GSU1525) nor because of a mutation in a putative homolog to Escherichia coli lrp, GSU3370.  相似文献   

18.
Geobacter sulfurreducens required expression of electrically conductive pili to form biofilms on Fe(III) oxide surfaces, but pili were also essential for biofilm development on plain glass when fumarate was the sole electron acceptor. Furthermore, pili were needed for cell aggregation in agglutination studies. These results suggest that the pili of G. sulfurreducens also have a structural role in biofilm formation.  相似文献   

19.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

20.
Previous work has shown that microbial communities in As-mobilizing sediments from West Bengal were dominated by Geobacter species. Thus, the potential of Geobacter sulfurreducens to mobilize arsenic via direct enzymatic reduction and indirect mechanisms linked to Fe(III) reduction was analyzed. G. sulfurreducens was unable to conserve energy for growth via the dissimilatory reduction of As(V), although it was able to grow in medium containing fumarate as the terminal electron acceptor in the presence of 500 muM As(V). There was also no evidence of As(III) in culture supernatants, suggesting that resistance to 500 muM As(V) was not mediated by a classical arsenic resistance operon, which would rely on the intracellular reduction of As(V) and the efflux of As(III). When the cells were grown using soluble Fe(III) as an electron acceptor in the presence of As(V), the Fe(II)-bearing mineral vivianite was formed. This was accompanied by the removal of As, predominantly as As(V), from solution. Biogenic siderite (ferrous carbonate) was also able to remove As from solution. When the organism was grown using insoluble ferrihydrite as an electron acceptor, Fe(III) reduction resulted in the formation of magnetite, again accompanied by the nearly quantitative sorption of As(V). These results demonstrate that G. sulfurreducens, a model Fe(III)-reducing bacterium, did not reduce As(V) enzymatically, despite the apparent genetic potential to mediate this transformation. However, the reduction of Fe(III) led to the formation of Fe(II)-bearing phases that are able to capture arsenic species and could act as sinks for arsenic in sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号