首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gas-liquid mass transfer coefficient K(L)a in the fermenter is a strong function of mode of energy dissipation and physico-chemical properties of the liquid media. A combination of disc turbine (DT) and pitched blade turbine down flow (PTD) impellers has been tested in laboratory bioreactor for gas hold-up and gas-liquid mass transfer performance for the growth and biotransformation medium for an yeast isolate VS1 capable of biotransforming benzaldehyde to L-phenyl acetyl carbinol (L-PAC) and compared with those in water.Correlations have been developed for the prediction of the fractional gas hold-up and gas-liquid mass transfer coefficient for the above media. The mass transfer coefficient and respiration rate have been determined in the shake flask for the growth as well as for biotransformation medium. These results, then have been used to optimize the operating parameters (impeller speed and aeration) for growth and biotransformation in a laboratory bioreactor. The comparison of cell mass production and L-PAC production in the bioreactor has been done with that obtained in shake flask studies.  相似文献   

3.
A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well-mixed reactor by a recycle flow of the broth. The gas and liquid phases are separated by a silicone membrane. Dynamic mass transfer experiments were performed to determine the mass transfer capacities for oxygen and carbon dioxide. The mass transfer coefficients for oxygen and carbon dioxide were found to be 1.55 +/- 0.17 x 10(-5) m/s and 4.52 +/- 0.60 x 10(-6) m/s, respectively. Cultivation experiments with the 3.0 mL bioreactor show that (i) it can maintain biomass in the same physiological state as the 4.0 L lab scale bioreactor, (ii) reproducible perturbation experiments such as changing substrate uptake rate can be readily performed and the physiological response monitored quantitatively in terms of the O2 and CO2 uptake and production rates.  相似文献   

4.
Scale-up effects on mass transfer and bioremediation of suspended naphthalene particles have been studied in 20 and 58L bead mill bioreactors and compared to data generated earlier with a laboratory scaled bioreactor. The bead mill bioreactor performance with respect to naphthalene mass transfer rate was dependent on the size and loading of the inert particles, as well as the rotational speed of the roller apparatus. The optimum operating conditions were found to be 15mm glass beads at a loading of 50% (total volume of particles/working volume of bioreactor: v/v%) and a bioreactor rotational speed of 50rpm. The highest naphthalene mass transfer coefficients obtained in the large scale system under these optimum conditions (19.6 and 22.4h(-1) for 20 and 58L vessels, respectively) were higher than those determined previously in a 2.5L bead mill bioreactor (0.7h(-1)). The acute toxicity tests indicated that the bioreactor effluent was less toxic than the untreated naphthalene suspension. Biodegradation rates obtained in these large scale bead mill bioreactors under optimum conditions (36-37.4mgL(-1)h(-1)) were higher than those achieved in the control bioreactors of similar sizes (11.4 and 11.6mgL(-1)h(-1)) but were slower than those previously determined in a 2.5L bead mill bioreactor (59-61.5mgL(-1)h(-1)). The limitation of oxygen in the large scale systems and damage of the bacterial cells due to the crushing effects of the large beads are likely contributing factors in the lower observed biodegradation rates. The optimum conditions with respect to naphthalene mass transfer might not necessarily translate to optimum performance with regard to bioremediation.  相似文献   

5.
An analysis of the local processes occurring in a trickle-bed bioreactor (TBB) with a first-order bioreaction shows that the identification of the TBB operating regime requires knowledge of the substrate concentration in the liquid phase. If the substrate liquid concentration is close to 0, the rate-controlling step is mass transfer at the gas-liquid interface; when it is close to the value in equilibrium with the gas phase, the controlling step is the phenomena occurring in the biofilm. CS2 removal rate data obtained in a TBB with a Thiobacilii consortia biofilm are analyzed to obtain the mass transfer and kinetic parameters, and to show that the bioreactor operates in a regime mainly controlled by mass transfer. A TBB model with two experimentally determined parameters is developed and used to show how the bioreactor size depends on the rate-limiting step, the absorption factor, the substrate fractional conversion, and on the gas and liquid contact pattern. Under certain conditions, the TBB size is independent of the flowing phases' contact pattern. The model effectively describes substrate gas and liquid concentration data for mass transfer and biodegradation rate controlled processes.  相似文献   

6.
This communication proposes a mechanistic modification to a recently published method for analyzing oxygen mass transfer in two-phase partitioning bioreactors (Nielsen et al., 2003), and corrects an oversight in that paper. The newly proposed modification replaces the earlier empirical approach, which treated the two liquid phases as a single, homogeneous liquid phase, with a two-phase mass transfer model of greater fundamental rigor. Additionally, newly developed empirical models are presented that predict the mass transfer coefficient of oxygen absorption in both aqueous medium and an organic phase (n-hexadecane) as a function of bioreactor operating conditions. Experimental values and theoretical predictions of mass transfer coefficients in two-phase dispersions, k(L)a(TP), are compared. The revised approach more clearly demonstrates the potential for oxygen mass transfer enhancement by organic phase addition, one of the motivations for employing a distinct second phase in a partitioning bioreactor.  相似文献   

7.
Liu R  Sun W  Liu CZ 《Biotechnology progress》2011,27(6):1661-1671
A two-dimensional axisymmetric computational fluid dynamics (CFD) model based on a porous media model and a discrete population balance model was established to investigate the hydrodynamics and mass transfer behavior in an airlift bioreactor for hairy root culture.During the hairy root culture of Echinacea purpurea, liquid and gas velocity, gas holdup, mass transfer rate, as well as oxygen concentration distribution in the airlift bioreactor were simulated by this CFD model. Simulative results indicated that liquid flow and turbulence played a dominant role in oxygen mass transfer in the growth domain of the hairy root culture. The dissolved oxygen concentration in the hairy root clump increased from the bottom to the top of the bioreactor cultured with the hairy roots, which was verified by the experimental detection of dissolved oxygen concentration in the hairy root clump. This methodology provided insight understanding on the complex system of hairy root culture and will help to eventually guide the bioreactor design and process intensification of large-scale hairy root culture.  相似文献   

8.
Development of a novel bioreactor system for treatment of gaseous benzene   总被引:1,自引:0,他引:1  
A novel, continuous bioreactor system combining a bubble column (absorption section) and a two-phase bioreactor (degradation section) has been designed to treat a gas stream containing benzene. The bubble column contained hexadecane as an absorbent for benzene, and was systemically chosen considering physical, biological, environmental, operational, and economic factors. This solvent has infinite solubility for benzene and very low volatility. After absorbing benzene in the bubble column, the hexadecane served as the organic phase of the two-phase partitioning bioreactor, transferring benzene into the aqueous phase where it was degraded by Alcaligenes xylosoxidans Y234. The hexadecane was then continuously recirculated back to the absorber section for the removal of additional benzene. All mass transfer and biodegradation characteristics in this system were investigated prior to operation of the integrated unit, and these included: the mass transfer rate of benzene in the absorption column; the mass transfer rate of benzene from the organic phase into the aqueous phase in the two-phase bioreactor; the stripping rate of benzene out of the two-phase bioreactor, etc. All of these parameters were incorporated into model equations, which were used to investigate the effects of operating conditions on the performance of the system. Finally, two experiments were conducted to show the feasibility of this system. Based on an aqueous bioreactor volume of 1 L, when the inlet gas flow and gaseous benzene concentration were 120 L/h and 4.2 mg/L, respectively, the benzene removal efficiency was 75% at steady state. This process is believed to be very practical for the treatment of high concentrations of gaseous pollutants, and represents an alternative to the use of biofilters.  相似文献   

9.
This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (k(L)a), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, k(L)a.  相似文献   

10.
Mammalian cells have been widely used to produce therapeutic proteins in stirred bioreactors in suspension culture. Local hydrodynamics can have a great impact on cell proliferation and protein synthesis, but there are few reports on spatial heterogeneity of nutrients, gas bubbles, and mass transfer coefficients. We have employed computational fluid dynamics (CFD) coupled with population balance equations to study local hydrodynamics in a 20 L stirred bioreactor. The flow patterns, energy dissipation rates, gas volume fraction, gas bubble size distribution and local mass transfer coefficient have been displayed throughout the whole bioreactor. Their implications for mammalian cell culture have been discussed. This study provides an insight into rational design and optimum operation conditions in a stirred bioreactor for mammalian cell cultivation.  相似文献   

11.
Although a lot of research has been done into modelling microbial processes, the applicability of these concepts to problems specific for bioreactor design and optimization of process conditions is limited. This is partly due to the tendency to separate the two essential factors of bioreactor modelling, i.e. physical transport processes and microbial kinetics. The deficiencies of these models become especially evident in industrial production processes where O2 supply is likely to become the limiting factor, e.g. production of gibberellic acid and other organic acids. Hydrodynamics, mass transfer and rheology of gibberellic acid production by Gibberella fujikuroi in an airlift bioreactor is presented in this work. Important hydrodynamic parameters such as gas holdup, liquid velocity in the riser and in the downcomer, and mixing time were determined and correlated with superficial gas velocity in the riser. Mass transfer was studied evaluating the volumetric mass transfer coefficient, which was determined as a function of superficial gas velocity in the riser and as a function of fermentation time. Culture medium rheology was studied through fermentation time and allowed to explain the volumetric mass transfer coefficient behaviour. Rheological behaviour was explained in terms of changes in the morphology of the fungus. Finally, rheological studies let us obtain correlations for gas holdup and volumetric mass transfer coefficient estimation using the superficial gas velocity in the riser and the culture medium apparent viscosity.  相似文献   

12.
The influence of short draft tubes covered by perforated plates on gas-liquid mass transfer was examined in external-loop airlift bioreactors. The volumetric mass transfer coefficients in a model external-loop airlift bioreactor were measured with water and non-Newtonian media. It was found that introduction of draft tubes covered with perforated plates in the riser significantly improved the mass transfer rate, particularly in higher viscous non-Newtonian fermentation media. The enhancement of mass transfer rate might be due mainly to an increase in bubble coalescence and redispersion. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
Principles of oxygen consumption, oxygen transport, suspension, and mixing are discussed in the context of propagating aggregates of plant tissue in liquid suspension bioreactors. Although micropropagated plants have a relatively low biological oxygen demand (BOD), the relatively large tissue size and localization of BOD in meristematic regions will typically result in oxygen mass transfer limitations in liquid culture. In contrast to the typical focus of bioreactor design on gas–liquid mass transfer, it is shown that media-solid mass transfer limitations limit oxygen available for aerobic plant tissue respiration. Approaches to improve oxygen availability through gas supplementation and bioreactor pressurization are discussed. The influence of media components on oxygen availability are also quantified for plant culture media. Experimental studies of polystyrene beads in suspension in a 30-l air-lift and stirred bioreactors are used to illustrate design principles for circulation and mixing. Potential limitations to the use of liquid suspension culture due to plant physiological requirements are acknowledged.  相似文献   

14.
《Process Biochemistry》2007,42(1):93-97
Successful scale-up of Azadirachta indica suspension culture for azadirachtin production was done in stirred tank bioreactor with two different impellers. The kinetics of biomass accumulation, nutrient consumption and azadirachtin production of A. indica cell suspension culture were studied in a stirred tank bioreactor equipped with centrifugal impeller and compared with similar bioreactor with a setric impeller to investigate the role of O2 transfer efficiency of centrifugal impeller bioreactor on overall culture metabolism. The maximum cell mass for centrifugal impeller bioreactor and stirred tank bioreactor (with setric impeller) were 18.7 and 15.5 g/L (by dry cell weight) and corresponding azadirachtin concentrations were 0.071 and 0.05 g/L, respectively. Glucose and phosphate were identified as the major growth-limiting nutrients during the bioreactor cultivation. The centrifugal impeller bioreactor demonstrated less shearing and improved O2 transfer than the stirred tank bioreactor equipped with setric impeller with respect to biomass and azadirachtin production.  相似文献   

15.
The aim of this work was to conduct a regime analysis on a three-phase (air–water–ionic liquid) stirred tank bioreactor of the Baeyer–Villiger bioconversion process, using [MeBuPyrr][BTA] ionic liquid as the dispersed phase. The regime analysis based on characteristic times of the different mechanisms involved (mixing, mass transfer, reaction) can yield a quantitative estimate of bioreactor performance. The characteristic time obtained for oxygen uptake rate (54 s−1) was among the characteristic times determined for oxygen transfer (13–129 s−1) under different operating conditions, suggesting that the oxygen transfer rate under certain operating conditions could be a limiting step in the bioconversion process. Further enhancement of oxygen transfer rates requires proper selection of the bioreactor operational conditions, and improved design of the ionic liquid used as oxygen transfer vector.  相似文献   

16.
Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 163-169, 1997.  相似文献   

17.
ABSTRACT:?

This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (kLa), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, kLa.  相似文献   

18.
In aerobic solid state fermentation systems, interaction of mass transfer effects with bioreaction plays an important role on the yields and productivities of the bioreactors. Experimental observations on the oxygen and carbon dioxide concentration gradients in a tray type solid state fermentation system are reported in this paper. Steep gradients are experienced in deep beds making large portions of the bioreactor ineffective. The results are useful in the design of the bioreactor in terms of efficient mass transfer as well as critical thickness of the substrate bed to be used.  相似文献   

19.
Liu R  Sun W  Liu CZ 《Biotechnology progress》2011,27(6):1672-1679
Recently, cichoric acid production from hairy roots of Echinacea purpurea was significantly improved by ultrasound stimulation in an airlift bioreactor. In this article, the possible mechanism on ultrasound-intensified hairy root culture of E. purpurea in the bioreactor was elucidated with the help of computational fluid dynamics (CFD) simulation, membrane permeability detection, dissolved oxygen concentration detection, confocal laser-scanning microscopy (LSM) observation, and phenylalanine ammonium lyase (PAL) activity analysis. The CFD model developed in Part I was used to simulate the hydrodynamics and oxygen mass transfer in hairy root bioreactor culture stimulated by ultrasound. A dynamic mesh model combined with a changing Schmidt number method was used for the simulation of the ultrasound field. Simulation results and experimental data illustrated that ultrasound intensified oxygen mass transfer in the hairy root clump, which subsequently stimulated root growth and cichoric acid biosynthesis. Ultrasound increased the hairy root membrane permeability, and a high root membrane permeability of 0.359 h(-1) was observed at the bottom region in the bioreactor. LSM observation showed that the change in the membrane permeability recovered to normal in the further culture after ultrasound stimulation. PAL activity in the hairy roots was stimulated by ultrasound increase and was correlated well to cichoric acid accumulation in the hairy roots of E. purpurea.  相似文献   

20.
Oxygen mass transfer was studied in conventional, bead mill and baffled roller bioreactors. Using central composite rotational design, impacts of size, rotation speed and working volume on the oxygen mass transfer were evaluated. Baffled roller bioreactor outperformed its conventional and bead mill counterparts, with the highest k L a obtained in these configurations being 0.58, 0.19, 0.41 min?1, respectively. Performances of the bead mill and baffled roller bioreactor were only comparable when a high bead loading (40 %) was applied. Regardless of configuration increase in rotation speed and decrease in working volume improved the oxygen mass transfer rate. Increase in size led to enhanced mass transfer and higher k L a in baffled roller bioreactor (0.49 min?1 for 2.2 L and 1.31 min?1 for 55 L bioreactors). Finally, the experimentally determined k L a in the baffled roller bioreactors of different sizes fit reasonably well to an empirical correlation describing the k L a in terms of dimensionless numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号