首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular partitioning into biomembranes is of fundamental importance in diverse biochemical processes and reactions. The majority of aqueous/membrane partition data using model membrane systems, is obtained with pure phosphatidylcholine bilayers, being lipid mixtures less used, while studies involving bilayers containing zwitterionic/anionic mixtures of phospholipids are even more scarce. In this study, the solvatochromic effects of 1-pyrenesulfonate observed at 375 nm in aqueous liposome suspensions, and monitored by second derivative absorption spectrophotometry, enabled the determination of its partition constants into defined phospholipid bilayers. We compare, under cautiously settled experimental conditions, the partition of the anionic amphiphile PSA into fluid zwitterionic bilayers of POPC (Kp=6.7 x 10(3), at 25 degrees C), and into fluid mixed zwitterionic/anionic bilayers containing small proportions of anionic phospholipids. At the same temperature, we found increasing K(p) values in parallel with the proportion of POPS mixed with POPC (Kp=3.4 x 10(4) and Kp=7.3 x 10(4), with 5 and 10 mol% of POPS, respectively). Our interpretation is based on the interfacial properties of fluid and flexible mixed zwitterionic/anionic phospholipid bilayers.  相似文献   

3.
Henriques ST  Castanho MA 《Biochemistry》2004,43(30):9716-9724
The action of the cell penetrating pep-1 at the molecular level is not clearly understood. The ability of the peptide to induce (1) vesicle aggregation, (2) lipidic fusion, (3) anionic lipid segregation, (4) pore or other lytic structure formation, (5) asymmetric lipidic flip-flop, and (6) peptide translocation across the bilayers in large unilamellar vesicles was studied using photophysical methodologies mainly related to fluorescence spectroscopy. Neflometry and turbidimetry techniques show that clustering of vesicles occurs in the presence of the peptide in a concentration- and anionic lipid content-dependent manner. Results from Forst?r resonance energy transfer-based methodologies prove lipidic fusion and anionic lipid segregation, but no evidence for pores or other lytic structures was found. Asymmetric lipid flip-flop was not detected either. A specific method related to the quenching of the rhodamine-labeled lipids by pep-1 was developed to study the eventual translocation of the peptide. Translocation does not occur in symmetrical neutral and negatively charged vesicles, except when a valinomycin-induced transmembrane potential exists. Our work strongly suggests that the main driving force for peptide translocation is charge asymmetry between the outer and inner leaflet of biological membranes and reveals that pep-1 is able to perturb membranes without being cytotoxic. This nonlytic perturbation is probably mandatory for translocation to occur.  相似文献   

4.
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic α-helix conformation in the presence of lipidic bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide translocation.  相似文献   

5.
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic alpha-helix conformation in the presence of lipidic bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide translocation.  相似文献   

6.
Henriques ST  Costa J  Castanho MA 《FEBS letters》2005,579(20):4498-4502
Cell-penetrating peptides (CPPs) are able to translocate across biological membranes and deliver bioactive proteins. Cellular uptake and intracellular distribution of CPPs is commonly evaluated with fluorescent labels, which can alter peptide properties. The effect of carboxyfluorescein label in the Lys-rich domain of the amphipathic CPP pep-1, was evaluated and compared with non-labelled pep-1 in vitro and in vivo. A reduced membrane affinity and an endosomal-dependent translocation mechanism, at variance with non-labelled pep-1, were detected. Therefore, the charged domain is not a mere enabler of peptide adsorption but has a crucial role in the translocation pathway of non-labelled pep-1.  相似文献   

7.
A direct method using derivative spectrophotometry was developed for determining membrane-water molar partition coefficients (Kp) of the anticancer drugs tamoxifen (TAM) and 4-hydroxytamoxifen (OHTAM). This method explores a shift in the absorption spectra of the drugs when removed from the aqueous phase to a hydrophobic environment. Partition of TAM and OHTAM depends on membrane composition and on drug concentration, temperature and presence of cholesterol. Unlike OHTAM, partition of TAM in DMPC bilayers, liposomes of sarcoplasmic reticulum (SR) lipids and native membranes of SR and mitochondria decreases linearly with drug concentration. Additionally, the partition of these drugs is higher in SR native membranes than in liposomes of SR lipids. The partition also depends on membrane type, being higher in mitochondria than in SR membranes. Maximal partitionings in DMPC are observed at temperatures in the range of the main phase transition. Cholesterol strongly affects the incorporation of drugs and maximal inhibition was observed in DMPC bilayers.  相似文献   

8.
Ziegler A  Blatter XL  Seelig A  Seelig J 《Biochemistry》2003,42(30):9185-9194
Cell-penetrating peptides (CPPs) traverse cell membranes of cultured cells very efficiently by a mechanism not yet identified. Recent theories for the translocation suggest either the binding of the CPPs to extracellular glycosaminoglycans or the formation of inverted micelles with negatively charged lipids. In the present study, the binding of the protein transduction domains (PTD) of human (HIV-1) and simian immunodeficiency virus (SIV) TAT peptide (amino acid residues 47-57, electric charge z(p) = +8) to membranes containing various proportions of negatively charged lipid (POPG) is characterized. Monolayer expansion measurements demonstrate that TAT-PTD insertion between lipids requires loosely packed monolayer films. For densely packed monolayers (pi > 29 mN/m) and lipid bilayers, no insertion is possible, and binding occurs via electrostatic adsorption to the membrane surface. Light scattering experiments show an aggregation of anionic lipid vesicles when the electric surface charge is neutralized by TAT-PTD, the observed stoichiometry being close to the theoretical value of 1:8. Membrane binding was quantitated with isothermal titration calorimetry and three further methods. The reaction enthalpy is Delta H degrees approximately equal to -1.5 kcal/mol peptide and is almost temperature-independent with Delta C(p) degrees approximately 0 kcal/(mol K), indicating equal contributions of polar and hydrophobic interactions to the reaction heat capacity. The binding of TAT-PTD to the anionic membrane is described by an electrostatic attraction/chemical partition model. The electrostatic attraction energy, calculated with the Gouy-Chapman theory, accounts for approximately 80% of the binding energy. The overall binding constant, K(app), is approximately 10(3)-10(4) M(-1). The intrinsic binding constant (K(p)), corrected for electrostatic effects and describing the partitioning of the peptide between the lipid-water interface and the membrane, is small and is K(p) approximately 1-10 M(-1). Deuterium and phosphorus-31 nuclear magnetic resonance demonstrate that the lipid bilayer remains intact upon TAT-PTD binding. The NMR data provide no evidence for nonbilayer structures and also not for domain formation. This is further supported by the absence of dye efflux from single-walled lipid vesicles. The electrostatic interaction between TAT-PTD and anionic phosphatidylglycerol is strong enough to induce a change in the headgroup conformation of the anionic lipid, indicating a short-lived but distinct correlation between the TAT-PTD and the anionic lipids on the membrane outside. TAT-PTD has a much lower affinity for lipid membranes than for glycosaminoglycans, making the latter interaction a more probable pathway for CPP binding to biological membranes.  相似文献   

9.
A simple method useful for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes entrapped in reverse micelles is proposed. The method is applied to the hydrolysis of 2-naphthyl acetate (2-NA) catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (AOT)/buffer/heptane reverse micellar solutions. In the presence of micelles, the relationship between the initial reaction rate and the analytical concentration of 2-NA was dependent on AOT concentration at a constant W ([water]/[AOT]) value. The dependence of the initial reaction rate profiles with [AOT] was analyzed according with the method proposed to obtain the partition constant of 2-NA between the micelles and the external solvent, Kp. A value of Kp = 2.7 L mol(-1) was obtained irrespective of the water content of the micelles (W from 5 to 20). The catalytic rate constant kcat in the micellar solutions was independent of [AOT] but slightly decreased with an increase in W from 2 x 10(-6) mol g(-1) s(-1) at W = 5 to 1.2 x 10(-6) mol g(-1) s(-1) at W = 20. The apparent Michaelis constant determined in terms of the analytical concentration of 2-NA increased with [AOT] at a given W and moderately decreased with W at a fixed [AOT]. The increase with [AOT] is accounted for by considering the partitioning of the substrate. After correction for the partitioning of 2-NA values of (Km)corr were obtained as 3.9 x 10(-3) mol L(-1) (W = 5), 4.6 x 10(-3) mol L(-1) (W = 10), 2.3 x 10(-3) mol L(-1) (W = 15), and 1.7 x 10(-3) mol L(-1) (W = 20). The rate parameters in the aqueous phase in the absence of micelles, were obtained as (kcat)aq = 7.9 x 10(-6) mol g(-1) s(-1) and (Km)aq = 2.5 x 10(-3) mol L(-1). In order to compare the efficiency of the enzyme in the micellar solution with that in aqueous phase, the values of (Km)corr were in turn corrected to take into account differences in the substrate activity, obtaining so a set of (Km)*corr values. The efficiency of the enzyme in the micellar solution, defined as the ratio, kcat/(Km)*corr, was found to be higher than in the aqueous phase, even at high water contents (W = 20). This higher efficiency is due to a significant decrease in (Km)*corr values.  相似文献   

10.
The polyene antibiotic filipin (a pentaene) has been studied using photophysical techniques. The polyene self-aggregates in water with a critical micellar concentration of 2 microM. Two approaches were used to evaluate the aggregate dimensions: (a) a lower limit of 10 nm for the aggregate radius was obtained from energy transfer experiments; (b) a formula for rationalizing the turbidity spectrum was derived, and from its application a spherical shape of radius about 50 nm was deduced. The low value for the fluorescence anisotropy of the aggregate (r = 0.02) is compatible with a very loose structure, i.e. the chromophore has very efficient depolarization dynamics that is not controlled by the aggregate size. The Stern-Volmer plot of aggregated filipin fluorescence quenching by iodide is non-linear, presenting a downward curvature. A model was used for the interpretation of these data, along with a study of the quenching in transient state; it was concluded that all the components of the decay are affected by the quencher, i.e. the aggregate has a very open structure with respect to the iodide ion. The partition constants of the polyene, Kp, between a model system of membranes (small unilamellar vesicles of dipalmitoylglycerophosphocholine) and the aqueous phase were determined from anisotropy measurements; the values obtained were Kp (gel phase) = (3.4 +/- 0.8) x 10(3) and Kp (liquid crystal phase) = (7.7 +/- 2.2) x 10(2). The observation that the polyene incorporation is efficient is at variance with the belief that the presence of sterols are essential for the interaction of polyene antibiotics with membranes [for review see Bolard, J. (1986) Biochim. Biophys. Acta 864, 257-304].  相似文献   

11.
The objective of this study was to develop non-invasive spectroscopic methods to quantify the partition coefficients of two beta-blockers, atenolol and nadolol, in aqueous solutions of bile salt micelles and to assess the effect of lecithin on the partition coefficients of amphiphilic drugs in mixed bile salt/lecithin micelles, which were used as a simple model for the naturally occurring mixed micelles in the gastrointestinal tract. The partition coefficients (Kp) at 25.0 +/- 0.1degreesC and at 0.1 M NaCl ionic strength were determined by spectrofluorimetry and by derivative spectrophotometry, by fitting equations that relate molar extinction coefficients and relative fluorescence intensities to the partition constant Kp. Drug partition was controlled by the: (i) drug properties, with the more soluble drug in water (atenolol) exhibiting smaller values of Kp, and with both drugs interacting more extensively in the protonated form; and by (ii) the bile salt monomers, with the dihydroxylic salts producing larger values of Kp for the beta-blockers, and with glycine conjugation of the bile acid increasing the values of Kp for the beta-blockers. Addition of lecithin to bile salt micelles decreases the values of Kp of the beta-blockers. Mixed micelles incorporate hydrophobic compounds due to their large size and the fluidity of their core, but amphiphilic drugs, for which the interactions are predominantly polar/electrostatic, are poorly incorporated in mixed micelles of bile salts/lecithin.  相似文献   

12.
An approach towards the determination of hydrophobic ligand distribution in endoplasmic reticulum membrane suspensions, and of hydrophobic ligand interaction with membrane-anchored proteins, based on calculations of local ligand pools, is presented. Rat testicular microsomes containing cytochrome P450XVII (P450XVII) were used as the model system and considered as consisting of three compartments, i.e. membrane lipid phase, aqueous phase and the ligand-binding protein, P450XVII. Combinations of spectrophotometry, ultracentrifugation and equilibrium dialysis were used to quantify progesterone concentrations in each of the three compartments, as well as partition coefficients, Kp. Since the substrate-access channel of P450XVII is likely to face the membrane-lipid phase, corrected spectral dissociation constants, Ks(corr), were calculated on the basis of free, i.e. not enzyme-bound, progesterone concentrations in the membrane compartment. Modulation of individual components and construction of more complex systems demonstrated the validity of this concept for analysis of multicompartment systems. Although ligand distribution was considerably affected by both ligand and membrane concentrations, Kp and Ks(corr) values were found to be independent of both parameters; Kp values amounted to 1920 and 3120, and Ks(corr) values amounted to 260 microM and 96 microM at 4 degrees C and 25 degrees C, respectively. Thermodynamic parameters delta H, delta S and delta G were calculated from Van't Hoff plots for progesterone partition into the membrane compartment, and for progesterone binding to P450XVII. Both of these processes were entropy dominated, and free energy changes amounted to about -18 kJ/mol for Kp and -20 kJ/mol for Ks(corr). Modification of P450XVII by gonadotropin-induced down-regulation, and by addition of a competitive inhibitor (estradiol) had no effect on progesterone partition. Consideration of Kp = 310 for estradiol allowed the determination of a corrected K1 = 3.09 mM. Modification of the membrane-lipid phase by detergents affected progesterone-P450XVII interaction solely by modulation of Kp; modification of the aqueous phase by addition of bovine serum albumin as a fourth compartment acted solely via additional steroid attraction. This model system therefore stresses the relevance of the local environment of membrane-bound enzymes or receptors for quantification of their interaction with substrates or ligands.  相似文献   

13.
The kinetics of electron-transfer reactions involving flavodoxins from Klebsiella pneumoniae (KpFld), Azotobacter chroococcum (AcFld), Anacystis nidulans (AnFld) and Megasphaera elsdenii (MeFld), the free, MgADP-bound and MgATP-bound forms of the Fe protein component of nitrogenase from K. pneumoniae [Kp2, Kp2(MgADP)2 and Kp2(MgATP)2] and Na2S2O4 were studied by stopped-flow spectrophotometry. Kinetic evidence was obtained for the formation of binary protein complexes involving KpFldSQ (semiquinone) with either Kp2(MgADP)2 (KD = 49 microM) or Kp2(MgATP)2 (KD = 13 microM) but not with Kp2 (KD greater than 730 microM). The binding of 2MgATP or 2MgADP to Kp2 therefore not only shifts the midpoint potential (Em) of the [4Fe-4S] centre from -200 mV to -320 mV or -350 mV respectively but also changes the affinity of Kp2 for KpFldSQ. Thermodynamically unfavourable electron from Kp2(MgADP)2 and Kp2(MgATP)2 to KpFldSQ occurs within the protein complexes with k = 1.2 s-1 (delta E = -72 mV) and 0.5 s-1 (delta E = -120 mV) respectively. Although AcFldSQ is reduced by Kp2, Kp2(MgADP)2 and Kp2(MgATP)2 (k = 8 x 10(3), 2.4 x 10(3) and 9 x 10(2) M-1.s-1 respectively), protein-complex formation is weak in each case (KD greater than 700 microM). Electron transfer in the physiologically important and thermodynamically favourable direction from Kp2FldHQ (hydroquinone) and AcFldHQ to Kp2ox.(MgADP)2 (the state of Kp2 that accepts electrons from FldHQ in the catalytic cycle of nitrogenase) is rapid (k greater than 10(6) M-1.s-1). The second-order rate constants for the reduction of KpFldSQ, AcFldSQ, AnFldSQ and MeFldSQ by SO2.- (active reductant formed by the predissociation of S2O4(2-) ion) exhibited the linear free-energy relationship predicted by the Marcus theory of electron transfer.  相似文献   

14.
The effect of four dopamine antagonists (spiperone, haloperidol, pimozide, and domperidone) on the lipid order of caudate nucleus microsomal membranes and on liposomes from membrane lipid extracts was evaluated and related to the partition coefficients (Kp) of the drugs. Lipid membrane order was determined by fluorescence polarization using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe of the membrane core and 1-[4-(trimethylammonium)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) as a probe of the membrane surface. Dopamine antagonists decrease the fluorescence polarization of both probes, indicating that they disorder the membrane lipids at different depths. Pimozide and domperidone, the drugs with higher Kp values, are more effective at decreasing the polarization of DPH, a probe of the membrane core, than that of TMA-DPH. In contrast, spiperone and haloperidol, which have lower values for Kp, induce more significant decreases in TMA-DPH depolarization, a probe of the membrane surface. These findings indicate that higher partition coefficients of the drugs are directly correlated with an increase of fluidity in the hydrophobic core of brain membranes. Ascorbate/Fe(2+)-induced membrane lipid peroxidation increases membrane order. Membrane lipid peroxidation decreases the partition coefficients of the dopamine antagonists tested. Increasing temperature (4-37 degrees C) decreases membrane order, but temperature effect is less evident after lipid peroxidation. The disordering effect of dopamine antagonists increases with increasing drug concentrations (1-15 microM), a maximum being observed at 10 microM. However, this effect is also less evident after membrane lipid peroxidation. We can conclude that dopamine antagonists and membrane lipid peroxidation affect membrane lipid order and that the action of these drugs is dependent on initial bilayer fluidity. Membrane lipid peroxidation increases membrane order while dopamine antagonists show a disordering effect of membrane phospholipids. This disordering effect can indirectly influence the activity of membrane proteins and it is one of the mechanisms through which membrane function can be altered by these drugs.  相似文献   

15.
Henriques ST  Costa J  Castanho MA 《Biochemistry》2005,44(30):10189-10198
The cell-penetrating peptide (CPP) pep-1 is capable of introducing large proteins into different cell lines, maintaining their biological activity. Two possible mechanisms have been proposed to explain the entrance of other CPPs in cells, endosomal-dependent and independent types. In this work, we evaluated the molecular mechanisms of pep-1-mediated cellular uptake of beta-galactosidase (beta-Gal) from Escherichia coli in large unilamellar vesicles (LUV) and HeLa cells. Fluorescence spectroscopy was used to evaluate the translocation process in model systems (LUV). Immunofluorescence microscopy was used to study the translocation in HeLa cells. Enzymatic activity detection enabled us to monitor the internalization of beta-Gal into LUV and the functionality of the protein in the interior of HeLa cells. Beta-Gal translocated into LUV in a transmembrane potential-dependent manner. Likewise, the extent of beta-Gal incorporation was extensively decreased in depolarized cells. Furthermore, beta-Gal uptake efficiency and kinetics were temperature-independent, and beta-Gal did not colocalize with endosomes, lysosomes, or caveosomes. Therefore, beta-Gal translocation was not associated with the endosomal pathway. Although an excess of pep-1 was mandatory for beta-Gal translocation in vivo, transmembrane pores were not formed as concluded from the trypan blue exclusion method. These results altogether indicated that protein uptake both in vitro with LUV and in vivo with HeLa cells was mainly, if not solely, dependent on negative transmembrane potential across the bilayer, which suggests a physical mechanism governed by electrostatic interactions between pep-1 (positively charged) and membranes (negatively charged).  相似文献   

16.
Summary The effects of average molecular weight of PEG, concentrations of PEG and KH2PO4 and pH on the partition equilibrium of acetylspiramycin in PEG/KH2PO4 aqueous two-phase systems were studied in detail. The partition coefficients of acetylspiramycin in PEG/ KH2PO4 systems were measured at room temperature 25 °C. It was found that acetylspiramycin partitioned unevenly in the aqueous two-phase systems composed of PEG and KH2PO4 and could be purified by this technique. A suitable phase-forming system (pH=6.7, 12w/w% PEG2000, 11w/w% KH2PO4) was found out after partition coefficient (Kp=42) , extraction ratio (=96%) and recovery ratio(R=98.8%) were investigated comprehensively in this paper.Hua qiang is one of the cooperators of the experimetal.  相似文献   

17.
The CD of glucagon, secretin, and vasoactive intestinal peptide has been studied as a function of temperature in water and in aqueous solutions of dodecyl sulfate, phosphatidyl glycerol, and L -α-phosphatidic acid (dipalmitoyl). The anionic detergent and lipids induce helix formation in all three peptides, with the amount of induced helical content increasing in the order glucagon < secretin < vasoactive intestinal peptide. These observations are subject to quantitative rationalization using a matrix formulation for the configuration partition function. In this formulation the major conformational consequences of the interaction with anionic lipids or detergents is an increase in the probability for helix formation by arginyl, histidyl, and lysyl residues. The region in which helix formation is maximal is found to be at amino acid residues 13–20 in all three peptides. Other studies have implicated this portion of the polypeptide chain in receptor binding. Thus, the helical segment induced by interaction with anionic lipids may play an important physiological role.  相似文献   

18.
The interaction of 3H-GABA (gamma-aminobutyric acid and 14C-glutamate with lipids in an aqueous organic partition system was studied. With this partition system 3H-GABA and 14C-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium we could not demonstrate any interaction between 3H-GABA and lipids. The apparent dissociation constants (Kd) for 3H-GABA-lipids or 14C-glutamate-lipids interactions in organic medium were in the millimolar range and maximal charge (Bmax) between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, beta-alanine and glycine displaced 3H-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 microM were required and in the partition system 3H-GABA and lipid phosphorus were both concentrated at the interface. Therefore lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate.  相似文献   

19.
The effect of ethanol-induced lipid interdigitation on the partition coefficient (Kp) of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and its two derivatives, 6-acetyl-2-(dimethylamino)naphthalene (Acdan) and 6-lauroyl-2-(dimethylamino)naphthalene (Laurdan), in L-alpha-dipalmitoylphosphatidylcholine (DPPC) vesicles has been examined by a precipitation method over the ethanol concentration range of 0-1.8 M. At 20 degrees C and in the absence of ethanol, the Kp values for Acdan, Prodan, and Laurdan are 2.0 x 10(3), 2.8 x 10(4), and 4.7 x 10(6), respectively. This result suggests that the Kp of Prodan and its derivatives is not simply a linear function of the polymethylene units. As DPPC undergoes the ethanol-induced phase transition from the noninterdigitated to the fully interdigitated gel state, Kp for Prodan and Acdan decreases by a factor of 5 and 2, respectively, whereas Kp for Laurdan exhibits no detectable changes with ethanol. The differences in Kp are in parallel with the differences in the fluorescence emission spectra of these probes over the ethanol concentration range examined. Previous fluorescence and infrared data indicated that membrane perturbation caused by the probes increases in the order: Laurdan > Prodan > Acdan. Thus, the degree of membrane perturbation also seems to be in parallel with Kp. Among these three probes, Prodan fluorescence reflects most correctly the ethanol-induced lipid interdigitation. In conclusion, the partitioning of small solutes in lipid membranes is significantly reduced by ethanol-induced lipid interdigitation, probably as a result of an increased membrane surface density due to the increased intramolecular lipid acyl chain ordering and a tighter overall intermolecular packing.  相似文献   

20.
Li L  Storm P  Karlsson OP  Berg S  Wieslander A 《Biochemistry》2003,42(32):9677-9686
1,2-Diacylglycerol 3-glucosyltransferase is associated with the membrane surface catalyzing the synthesis of the major nonbilayer-prone lipid alpha-monoglucosyl diacylglycerol (MGlcDAG) from 1,2-DAG in the cell wall-less Acholeplasma laidlawii. Phosphatidylglycerol (PG), but not neutral or zwitterionic lipids, seems to be essential for an active conformation and function of the enzyme. Surface plasmon resonance analysis was employed to study association of the enzyme with lipid bilayers. Binding kinetics could be well fitted only to a two-state model, implying also a (second) conformational step. The enzyme bound less efficiently to liposomes containing only zwitterionic lipids, whereas increasing molar fractions of the anionic PG or cardiolipin (CL) strongly promoted binding by improved association (k(a1)), and especially a decreased rate of return (k(d2)) from the second state. This yielded a very low overall dissociation constant (K(D)), corresponding to an essentially irreversible membrane association. Both liposome binding and consecutive activity of the enzyme correlated with the PG concentration. The importance of the electrostatic interactions with anionic lipids was shown by quenching of both binding and activity with increasing NaCl concentrations, and corroborated in vivo for an active enzyme-green fluorescent protein hybrid in Escherichia coli. Nonbilayer-prone lipids substantially enhanced enzyme-liposome binding by promoting a changed conformation (decreasing k(d2)), similar to the anionic lipids, indicating the importance of hydrophobic interactions and a curvature packing stress. For CL and the nonbilayer lipids, effects on enzyme binding and consecutive activity were not correlated, suggesting a separate lipid control of activity. Similar features were recorded with polylysine (cationic) and polyglutamate (anionic) peptides present, but here probably dependent on the selective charge interactions with the enzyme N- and C-domains, respectively. A lipid-dependent conformational change and PG association of the enzyme were verified by circular dichroism, intrinsic tryptophan, and pyrene-probe fluorescence analyses, respectively. It is concluded that an electrostatic association of the enzyme with the membrane surface is accompanied by hydrophobic interactions and a conformational change. However, specific lipids, the curvature packing stress, and proteins or small molecules bound to the enzyme can modulate the activity of the bound A. laidlawii MGlcDAG synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号