首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gllcocorticoid inhibition of amino acid transport in rat hepatoma cells   总被引:2,自引:0,他引:2  
Dexamethasone rapidly and reversibly inhibits the initial rate of transport of α-aminoisobutyric acid in rat hepatoma cells in tissue culture. Colcemid and cytochalasin B neither inhibit transport nor interfere with its inhibition by dexamethasone, arguing that microtubules and microfilaments are not involved in this hormonal effect. Continuous protein synthesis is required both for the dexamethasone inhibition of transport and for its reversal, although cycloheximide alone inhibits transport in control cells by less than 25%. A model for the dexamethasone inhibition of amino acid transport is presented suggesting that glucocorticoids either block the synthesis or enhance the degradation of a rate-limiting protein in the transport system.  相似文献   

2.
Substrate regulation of System A transport activity in rat H4 hepatoma cells is described. The uptake of several amino acids was tested in the presence of system-specific inhibitors. System A activity was increased in a RNA- and protein synthesis-dependent manner by amino acid deprivation of the cells (adaptive regulation), whereas transport by Systems ASC, N, y+, and L was unaffected. Unlike human fibroblasts, the H4 cells did not require serum to exhibit the depression of System A. At cell densities between 88 X 10(3) and 180 X 10(3) cells/cm2, the degree of adaptive regulation was inversely related to cell density. Both transport of AIB and adaptive regulation of System A were nearly abolished if either K+ or Li+ was substituted for Na+ in the medium. The presence of cycloheximide or tunicamycin blocked further increases in starvation-induced activity within 1 hr of addition, suggesting the involvement of a plasma membrane glycoprotein. In contrast, if the medium was supplemented with actinomycin after the stimulation of System A had begun, the activity continued to increase for an additional 2 hr before being slowed by the inhibitor. The contributions of trans-inhibition and repression to the amino acid-induced decay of System A activity were estimated for several representative amino acids. In general, the System A activity in normal rat hepatocytes was much less sensitive to trans-inhibition than the corresponding activity in H4 hepatoma cells. The half-life values for the amino acid-dependent decay of System A ranged from 0.5 to 2.0 hr.  相似文献   

3.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

4.
Glucocorticoids decrease the plasminogen activator activity of rat hepatoma cells through production of an inhibitor. We have examined the dexamethasone regulation of plasminogen activator in anucleate rat hepatoma cells to investigate the role of the nucleus in the steroid regulation of this membrane-associated phenomenon. Dexamethasone did not affect either the intra- or extra-cellular plasminogen activator activity of the anucleate cells, and did not induce production of an inhibitor of plasminogen activator. Therefore, glucocorticoid regulation of plasminogen activator activity requires the presence of an intact nucleus.  相似文献   

5.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

6.
7.
8.
Analytical fractionation of cultured hepatoma cells (HTC cells)   总被引:6,自引:0,他引:6  
Homogenates of HTC cells have been fractionated by differential centrifugation (in four particulate fractions: N, M, L, P, and a supernatant S) or isopycnic banding in linear sucrose gradients. On this basis, the following subcellular organelles may be characterized: (i) Mitochondria, detected by cytochrome oxidase and succinodehydrogenase, are collected in the M and L fractions, and equilibrate, as a narrow band, at a median buoyant density of 1.18 g/cm3. (ii) Lysosomes, detected by the latent hydrolases beta-glycerophosphatase and N-acetyl-beta-glucosaminidase, are largely sedimented in the M and L fractions, and display a broad density distribution pattern with a median value of 1.17 g/cm3. This density is decreased or increased after cultivation of the cells in presence of Triton WR-1339 or Dextran 500, respectively. The behavior of cathepsin D is somewhat at variance with that of the two other hydrolases. (iii) Plasma membrane is tentatively detected by alkaline phosphodiesterase I. Largely recovered in the P fraction, this enzyme equilibrates at a median density close to that of the lysosomal hydrolases; the bulk of cholesterol and about half of the leucyl-2-naphthylamidase are closely associated with alkaline phosphodiesterase I; HTC cells do not contain typical 5'-nucleotidase. (iv) Catalase-bearing particles, of high buoyant density (1.22 g/cm3) are present, but 30-40% of the catalase is also found readily soluble. NADPH- and NADH: cytochrome c reductase, and RNA show more complex distributions. It is suggested that the former enzyme is associated with the endoplasmic reticulum; as in liver, NADH reductase activity is shared between the endoplasmic reticulum and the mitochondria; half of the RNA is associated with free ribosomes of polysomes. True glucose-6-phosphatase could not be detected.  相似文献   

9.
Using the combination of a subtracted library and differential hybridization, a 409-base pair cDNA was identified that corresponds to a mRNA that is induced 2-3-fold when rat Fao hepatoma cells are subjected to amino acid starvation for 12 h. While this mRNA species was induced during starvation, others such as beta-actin, Cu-Zn superoxide dismutase, glyceraldehyde-3-P, and histone H4 were decreased in abundance to 25-50% of their original levels. The induction of the amino acid starvation-induced (ASI) mRNA was repressed when starved cells were returned to a medium supplemented with amino acids. Tissue distribution analysis showed the ASI mRNA, approximately 650 base pairs in length, to be present in every rat tissue tested. The cDNA clone has been sequenced and appears to correspond to the 3'-most end of the mRNA. The cDNA sequence includes the poly(A) tail, two potential polyadenylation signal sequences, and an open reading frame that we presume to be a portion of the coding sequence. The ASI cDNA will be used to investigate the molecular mechanisms for amino acid-dependent regulation of protein expression by mammalian cells.  相似文献   

10.
11.
Characterization of aldehyde dehydrogenase from HTC rat hepatoma cells   总被引:1,自引:0,他引:1  
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring during hepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 100 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusion, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

12.
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring duringhepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 110 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusions, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

13.
14.
Antibodies to the two dexamethasone-binding proteins from rat liver cytosol have been elicited in rabbits. These antibodies precipitate the dexamethasone binding activities from rat liver cytosol as weil as cytosol from Hepatoma Tissue Culture (HTC) cells. Antibodies to the 45 000 D protein have been used for demonstration of the intracellular dynamics of the glucocorticoid receptor complex by immunofluorescence microscopy, comparing HTC cells treated with dexamethasone at 4 and 37 °C.  相似文献   

15.
Dexamethasone, a synthetic glucocorticoid, is required for full posttranslational maturation of mouse mammary tumor virus (MMTV) phosphoproteins and glycoproteins in M1.54 cells, a viral infected rat hepatoma (HTC) cell line. Pulse-chase radiolabeling with [35S]methionine revealed that steroids with known glucocorticoid activity (such as dexamethasone and hydrocortisone) regulated the maturation of both MMTV polyproteins in a manner proportional to their occupancy for glucocorticoid receptors and their biological potency. In contrast, progesterone selectively induced the proteolytic processing of MMTV phosphoproteins but simultaneously antagonized the dexamethasone-regulated maturation of MMTV glycoproteins and all other tested glucocorticoid responses. Exposure to suboptimal concentrations of both progesterone and dexamethasone fully stimulated the processing of MMTV phosphoproteins, suggesting that steroid receptors occupied with combinations of either steroid functionally interact at the putative maturation gene. Moreover, treatment with either actinomycin D, a potent inhibitor of de novo RNA synthesis, or RU38486, a synthetic antagonist of glucocorticoid and progesterone action, prevented both the dexamethasone and progesterone-regulated induction of MMTV phosphoprotein maturation. Sedimentation velocity and saturation binding analysis revealed that the sizes and concentrations of hepatoma cell progesterone and dexamethasone binding activities are similar while specific binding of the active progestin R5020 was not detected in either M1.54 cells or the glucocorticoid receptor deficient HTC cell line MSN6.10.2. Taken together, our results demonstrate that two distinct classes of steroid hormones can uniquely alter the posttranslational maturation of a specific subset of phosphoprotein substrates by a common glucocorticoid receptor-dependent process.  相似文献   

16.
The effect has been studied of various media, hormones and of amino acids on the membrane potential of rat hepatoma cells in culture measured by microelectrode impalement. Cells in Eagle's minimal essential medium plus 5% serum had a value which varied daily from about 5–8 mV, inside negative. The membrane potential of rat hepatocytes was measured to be 8.7 ± 0.2mV, inside negative. The membrane potential of the hepatoma cells was decreased by insulin and increased by glucagon. Membrane potential was unaffected by change of medium to Hanks' or Earle's balanced salt solutions or deprivation of serum. It was, however, reduced in cells in phosphate-buffered saline and by reduction of pH. The former effect was shown to be due to the higher [Na+] of phosphat-buffered saline as opposed to the other media. Addition of alanine, glycine, serine, proline and methylaminoisobutyrate all reduced membrane potential by 2–3 mV. Smaller decreases were seen with methionine, leucine and phenylalanine, but none with glutamine, threonine, BCH (2-aminonorborane-2-carboxylic acid) and D-alanine. The results are compared with the effects of similar conditions on aminoisobutyrate uptake. Whilst there was a correlation under some conditions there was not under others. It is concluded that for the hepatoma cells factors additional to the membrane potential must exert some influence on the capacity for amino acid transport.  相似文献   

17.
18.
19.
The plasma membrane of the hepatoma cell line, HTC cells, has been characterized and purified by cell fractionation techniques. In the absence of true 5′-nucleotidase in HTC cells, alkaline phosphodiesterase I has been used as a marker enzyme, following conclusions gained from differential and isopycnic centrifugation studies (Lopez Saura, P., Trouet A. and Tulkens P. (1978) Biochim. Biophys. Acta 543, 430–449). To confirm this localization, HTC cells were exposed to anti-plasma membrane IgG at 4°C and fractionated. Alkaline phosphodiesterase I and IgG showed super imposable distribution patterns in linear sucrose gradients. Alkaline phosphodiesterase I is, however, only poorly resolved from enzyme markers of other organelles, especially NADPH-cytochrome c reductase (endoplasmic reticulum) and galactosyltransferase (Golgi complex). Maximal purification from the homogenate is only 13-fold, on a protein basis, even when using a microsomal fraction (67 and 13% of alkaline phosphodiesterase I and protein, respectively) as the starting material. Improved resolution can be obtained after the addition of small quantities of digitonin (equimolar with respect to the cholesterol content). Digitonin increases the buoyant density of alkaline phosphodiesterase I by approx. 0.05 g/cm3, whereas the buoyant densities of galactosyltransferase and NADPH-cytochrome c reductase are increased only by 0.03 and 0.015 g/cm3, respectively. Accordingly, a procedure has been designed which yields a fraction containing 22.8% of alkaline phosphodiesterase I with a purification of 21-fold on a protein basis. The content of NADPH-cytochrome c reductase and galactosyltransferase is 1.2 and 2.1%, respectively. Electron microscopy shows smooth surface membrane elements and vesicles, with only occasional other recognizable elements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号