首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
Heat shock proteins (HSPs) expression is commonly used as indicators of cellular stress in animals. However, very little is known about either the expression patterns of HSPs or their role in the stress-tolerance phenomenon in early life stages of fish. To this end, we examined the impact of food-deprivation (12 h), reduced oxygen levels (3.5 mg/L for 1 h) and heat shock (HS: + 5 °C for 1 h) on HSP70 and HSP90 protein expression in early life stages of the gilthead sea bream (Sparus aurata), a warm-water aquaculture species. Also, we investigated HSP70 and HSP90 response to food-deprivation (7 days) in early life stages of rainbow trout (Oncorhynchus mykiss), a cool-water aquaculture species, and the tolerance of this larvae to heat shock (either + 5 or + 10 °C for 1 h). Our results clearly demonstrate that food-deprivation enhances HSP70 and HSP90 protein expression in larvae of both species. In gilthead sea bream larvae, the stressors-induced HSP70 and HSP90 (only in the reduced oxygen group) protein expression returned to unstressed levels after 24 h recovery. In fed trout larvae, a + 5 °C heat shock did not elevate HSP70 and HSP90 expression, whereas 100% mortality was evident with a + 10 °C HS. However, food-deprived trout larvae, which had higher HSP70 and HSP90 protein content, survived HS and showed HS-dependent increases in HSP70, but not HSP90 expression. Overall, HSP70 and HSP90 protein expression in early life stages of fish have the potential to be used as markers of nutritional stress, while elevation of the tissue HSPs content may be used as a means to increase stress tolerance during larval rearing.  相似文献   

2.
3.
Although the induction of heat shock proteins (HSP) has been studied extensively in cultured cells, comparatively few studies have examined their expression in vivo. In this report, mRNA expression of two HSP families, HSP70 and HSP27, was investigated in brain, liver, lung, and skin of rats exposed to elevated ambient temperatures. The time course and relative magnitude of the heat-induced expression for these two HSP differed between tissues of the same animal. Even within the same tissue, HSP70 and HSP27 displayed differential kinetics of induction. In brain, lung, and skin, induction of HSP70 was dependent on the duration and temperature of the heat stress. This induction was transient with maximal HSP70 expression occurring at 1 h and returning to baseline 3 h after removal of the animals from heat stress. In liver, HSP70 expression did not show a direct relationship with temperature conditions and maximal induction did not occur until 6 h after heat stress. Heat-induced HSP27 expression was dependent on time and temperature of exposure in lung and skin but not in brain and liver. These findings demonstrate that the heat shock response in vivo lacks much of the coordinate control of expression characteristic of cultured cell populations and suggest that mechanisms controlling this cellular stress response are influenced by physiologic factors that cannot be studied in vitro.  相似文献   

4.
5.
The effects of proteasome inhibition (PI) on heat-shock protein (HSP) expression in cardiomyocytes were investigated. Neonatal rat cardiomyocytes were incubated with MG132 (0.1-10 microM) for 1 h. Induction of various HSPs was determined by real-time PCR and Western blotting. PI induced a 2- to 3-fold increase in HSP27, HSP60, and HSP90, and a 18-fold increase in HSP70 mRNA expression, whereas HSP40 levels were unaffected. Western blotting revealed increased protein expression for HSP70 after PI. Similar results were obtained with MG262. HSP induction correlated with enhanced survival of neonatal cardiomyocytes after sublethal heat stress in XTT testing. In papillary muscles, pretreatment with MG132 (10 microM, 90 min) was associated with enhanced recovery of the contractile parameters after a 40-min hypoxia. In these proof-of-principle experiments, we show that PI induces differential heat-shock response in cardiomyocytes, accompanied by enhanced cell survival and functional recovery after various forms of stress.  相似文献   

6.
In this work we report a new method forin vitro chili pepper (Capsicum annuum L.) plant regeneration based on shoot formation from wounded hypocotyls. Chili pepper seeds were surface sterilized and germinated on agar (0.8%) at 25 ± 2°C in the dark. Five factors that may influence shoot regeneration were studied: age of seedlings, hypocotyl wounding site, time elapsed between wounding the hypocotyls and decapitation of seedlings, culture media and cultivars. In order to study the influence of the first three factors on shoot regeneration, the apical, middle or basal hypocotyl regions of seedlings of cv. Mulato Bajio at different stages of development (9, 15, 16, 21 and 28 d old) were wounded with a syringe needle, and the seedlings were cultured on MS semisolid medium without growth regulators at 25 ± 2°C under a 16/8 h light/dark photoperiod (daylight fluorescent lamps; 35 mol m-2 s--1) until decapitation. The seedlings were decapitated (3 mm below the cotyledons) at different times after wounding (0, 2, 4, 10, 12 and 14 d), and each explant was evaluated for bud and shoot formation ( 5 mm in length) at the wounded site after 30 d of incubation. In general, seedlings at the stage of curved hypocotyl (9 d old) wounded in the apical region of hypocotyl were the best explants for shoot regeneration when inoculated on culture medium without growth regulators. Decapitation after wounding also influenced the shoot regeneration efficiency, with 10–14 d being the best period. Up to 90% shoot regeneration in cv. Mulato Bajio was obtained under these conditions. Statistically significant differences were observed for shoot formation among 21 cultivars tested. Regeneration of whole plants was achieved by rooting the shoots with indole-3-butyric acid pulses of 60 mg L–1 for 3 h and then subculturing on MS medium without growth regulators.  相似文献   

7.
8.
Consumer stress models of ecological theory predict that predators are more susceptible to stress than their prey. Intertidal mussels, Mytilus californianus, span a vertical stress gradient from the low zone (lower stress) to the high zone (higher thermal and desiccation stress), while their sea star predators, Pisaster ochraceus, range from the low zone only into the lower edge of the mussel zone. In summer 2003, we tested the responses of sea stars and mussels to environmental stress in an experiment conducted on the Oregon coast. Mussels were transplanted from the middle of the mussel bed to cages in the low and high edges of the mussel bed. Sea star predators were added to half of the mussel cages. Mussels and sea stars were sampled between June and August for indicators of sublethal stress. Mussel growth was measured, and tissues were collected for heat shock protein (Hsp70) analyses and histological analyses of reproduction. Sea stars were weighed, and tissues were sampled for Hsp70 analyses. Mussels in high-edge cages had higher levels of total Hsp70 and exhibited spawning activity earlier in the summer than mussels in the low-edge cages. Sea stars suffered high mortality in the high edge, and low-edge sea stars lost weight but showed no differences in Hsp70 production. These results suggest that stress in the intertidal zone affected the mobile predator more than its sessile prey, which is consistent with predictions of consumer stress models. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Yen SK  Chung MC  Chen PC  Yen HE 《Plant physiology》2001,127(2):517-528
A wounded gene WI12 was used as a marker to examine the interaction between biotic stress (wounding) and abiotic stress (high salt) in the facultative halophyte ice plant (Mesembryanthemum crystallinum). The deduced WI12 amino acid sequence has 68% similarity to WUN1, a known potato (Solanum tuberosum) wound-induced protein. Wounding, methyl jasmonate, and pathogen infection induced local WI12 expression. Upon wounding, the expression of WI12 reached a maximum level after 3 h in 4-week-old juvenile leaves, whereas the maximum expression was after 24 h in 8-week-old adult leaves. The temporal expression of WI12 in salt-stressed juvenile leaves was similar to that of adult leaves. The result suggests that a salt-induced switch from C3 to Crassulacean acid metabolism has a great influence on the ice plant's response to wounding. The expression of WI12 and the accumulation of WI12 protein were constitutively found in phloem and in wounded mesophyll cells. At the reproductive stage, WI12 was constitutively found in petals and styles, and developmentally regulated in the placenta and developing seeds. The histochemical analysis showed that the appearance of WI12 is controlled by both environmental and developmental factors. Immunogold labeling showed WI12 preferentially accumulates in the cell wall, suggesting its role in the reinforcement of cell wall composition after wounding and during plant development.  相似文献   

10.
11.
12.
13.
To understand the effect of wounding stress on alcohol dehydrogenase(ADH, EC 1.1.1.1) in monocotyledonous and dicotyledonous plants, maize(Zea mays L.) and lettuce (Lactucasativa L.) seedlings were subjected to wounding stress and ADHactivity and abscisic acid (ABA) concentration were determined. In response tothe stress, the ADH activity in seedlings of both species increased rapidly asaresult of increased synthesis of the ADH. At 12 h after thestress,the activities in the wounded lettuce and maize seedlings, respectively,increased to 1.7- and 1.5-fold of that in non-stressed seedlings. Woundingstress also increased the concentration of endogenous ABA during the first 6h in both seedlings. The maximum increased levels of ABA in thelettuce and maize seedlings were 4.9- and 4.7-fold of that in the non-stressedseedlings, respectively.  相似文献   

14.
Chronic hypoxia exposure can cause neurobehavioral dysfunction, but the underlying cellular and molecular mechanisms remain unclear. Here, we found that adult Lymnaea stagnalis snails maintained in low O(2) (approximately 5%) for 4 days developed slowed reactions to light stimuli, and reduced righting movement. Semiquantitative immunoblotting analyses showed that hypoxia exposure induced increased expression of heat-shock protein (HSP)70 in ganglion preparations, and suppressed expression of the presynaptic proteins syntaxin I, synaptic vesicle protein 2 (SV2) and synaptotagmin I. Detailed time course analyses showed that an early moderate increase developed within 6 h, preceding a substantial up-regulation of HSP70 after 4 days; an early reduction of syntaxin I in the first 24 h; a delayed reduction of synaptotagmin I after 4 days; and a biphasic change in SV2. Using a double-stranded RNA interference approach, we demonstrated that preventing the hypoxia inducible HSP70 enhanced down-regulation of syntaxin and synaptotagmin, and aggravated motor and sensory suppression. Co-immunoprecipitation analysis revealed an interaction between HSP70 and syntaxin. We have thus provided the first evidence that early induction of HSP70 by chronic hypoxia is critical for maintaining expression levels of presynaptic proteins. These findings implicate a new molecular mechanism underlying chronic hypoxia-induced neurobehavioral adaptation and impairment.  相似文献   

15.
A decline in an organism's ability to cope with stress through acute response protein expression may contribute to stress intolerance with aging. We investigated the influence of aging on stress tolerance and the capacity to synthesize the 70-kDa heat shock protein (HSP70) in young and old rats exposed to an environmental heating protocol. Livers were assessed for injury and HSP70 expression after heat stress by use of immunohistochemical and immunoblotting techniques. The inducible HSP70 response in the cytoplasm and nucleus was markedly reduced with age at several time points over a 48-h recovery period, although senescent rats were able to strongly express HSP70 early in recovery. Older animals had extensive zone-specific liver injury, which corresponded to the diminished HSP70 response observed in these regions, and a significant reduction in thermotolerance compared with their young counterparts. These data highlight the regional nature of stress-induced injury and HSP70 expression in the liver and the impact of aging on these responses. Furthermore, the results suggest a functional link between the age-related decrements in the expression of inducible HSP70 and the pathophysiological responses to heat stress.  相似文献   

16.
17.
In aquaculture, fish are exposed to stressful conditions, which cause an increased synthesis of heat shock proteins (HSPs) at the cellular level. In this work we considered the expression of the constitutive and inducible forms of HSP70 as an indicator of stress caused by transport, during development of the sea bass (Dicentrarchus labrax), a teleost fish of high value for aquaculture. Qualitative RT-PCR analysis revealed expression of inducible HSP70 gene in larvae and fry (25, 40 and 80 days) as well as in adult tissues (liver, brain, muscle, gills, kidney, gonads, heart, spleen and skin) of both control and stressed animals. Expression of inducible HSP70 mRNA examined in different adult tissues by Real-Time PCR, was significantly higher in skin and skeletal muscle of stressed animals than in controls. Immunolocalization of inducible and constitutive forms of heat shock protein 70 (HSP70 and HSC70), reported here for the first time, demonstrated an ubiquitous distribution of HSC70 protein in several tissues of both stressed and control animals (at all stages), while inducible HSP70 protein was found only in skeletal muscle of stressed animals. In all stressed animals, regardless of their developmental stage, cortisol levels were higher than in control animals.  相似文献   

18.
Metallothionein (MT), a low molecular weight metal-binding protein, has been related to zinc and copper metabolism, the acute-phase response, and cellular proliferation. In this study, we investigated changes in zinc metabolism and MT gene expression occurring in tissue damage and repair during wound healing in mouse skin. Northern blot analysis revealed that a significant increase of MT mRNA was observed in the liver for 18 h after wounding, and serum zinc downfall and hepatic zinc uptake were observed. In situ hybridization analysis showed that no significant expression of MT mRNA was detected within the first 9 h after wounding. However, it was expressed restrictively in the proliferating epidermis of the wound margin after 12 h. Zinc began to accumulate in wounded skin after MT gene expressed. Northern blotting and immunocytochemical staining revealed that MT has been synthesized actively during the growth phase compared with the stationary phase in normal human epidermal keratinocytes in vitro. Intracellular zinc accumulation was observed in the proliferating cells. We concluded that hepatic MT plays an important role as an acute phase protein against host damage, and epidermal MT contributes in the supply of zinc to wounded tissue and activates proliferation for the regeneration of epidermis. Accepted: 2 July 1999  相似文献   

19.
We studied the local response to wounding in Arabidopsis thaliana leaves using a two-step microarray analysis. A microarray containing 3500 cDNA clones was first screened to enrich for genes affected by wounding in the immediate vicinity of the wound (4 h post wounding). 359 non-redundant putative wound responsive genes were then spotted on a smaller wound-response array for detailed analysis of spatial expression (local, adjacent and systemic), timing of expression (0.5, 4, 8, 17 h), and effect of hormone treatments (methyl jasmonate, ethylene and abscisic acid). Our results show that genes that respond early at the site of the wound also respond throughout the plant, with similar kinetics. Early-induced genes which respond systemically encode predominantly signal transduction and regulatory factors (36%), and the expression of many of them is also controlled by methyl jasmonate (about 35% of the 36%). Genes specific to the wound site and the wounded leaf have a slower response to wounding and are mainly metabolic genes. At the wound, many genes of the lignin biosynthesis pathway were induced. In silico analysis of the 5′ promoter regions of genes affected by wounding revealed G-box-related motifs in a significant proportion of the promoters. These results show that the establishment of a systemic response to wounding is a priority for the plant, and that the local response at the wound site is established later. Ethylene and abscisic acid are involved in the local response, regulating repression of photosynthetic genes and expression of drought responsive genes respectively.  相似文献   

20.
Coelomocytes are recognized as the main cellular component of the echinoderm immune system. They are the first line of defense and their number and type can vary dramatically during infections or following injury. Sea stars have been used as a model system to study the regeneration process after autotomy or predation. In the present study we examined the cellular and biochemical responses of coelomocytes from the European sea star Asterias rubens to traumatic stress using immunochemical and biochemical approaches. In terms of trauma and post-traumatic stress period, here we consider the experimental arm amputation and the repair phase involved in the first 24 hours post-amputation, which mimicked a natural predation event. Four cell morphotypes were distinguishable in the coelomic fluid of both control and post-traumatic-stressed animals (phagocytes, amoebocytes, vibratile cells, hemocytes), but phagocytes were the major components, accounting for about 95% of the total population. Thus, the effects measured relate to the overall population of coelomocytes. A modest increase in the total number of freely circulating coelomocytes was observed 6 hours post-amputation. Interestingly, a monoclonal antibody (McAb) to a sea urchin embryo adhesion protein (toposome) cross-reacted with isolated sea star coelomocytes and stained the coelomic epithelium of control animals with an increase in trauma-stressed arms. In addition, coelomocytes from trauma-stressed animals showed a time-dependent increase in Hsp70 levels, as detected by both immunocytochemistry and immunoblotting within 24 hours after arm tip amputation, with a peak at 6 hours after amputation. Our findings indicate a clear role for coelomocytes and classic stress molecules in the post-traumatic stress associated with the early repair phase of regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号