首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了浓度为0、1、5、10、15、20 mg/L的新兴离子液体溴化1-己基-3-甲基咪唑([C6mim]Br)在24h、48h、72h和96h对斜生栅藻还原型谷胱甘肽(GSH)及其代谢酶-谷胱甘肽过氧化物酶(GPX)、谷胱甘肽转硫酶(GST)和谷胱甘肽还原酶(GR)的影响。结果表明:GSH含量在24h、48h和72h时,在最低处理浓度下不变,其他处理浓度下随胁迫浓度增加而降低,96h时则与对照无差异或较小;GPX和GST的活性在72h之前明显升高(最高浓度组的GST活性有波动),96h时均降低至对照水平;GR活性在24h时,[C6mim]Br=1 mg/L时升高,之后降低,在48h增高至对照水平,72h时,[C6mim]Br≥10 mg/L的处理组高于对照水平,96h时,除最低处理组外,均降至对照水平以下。GR是GSH系统中的限速酶,GST则是该系统中活性和灵敏性最高的酶,可作为[C6mim]Br胁迫时的敏感的生物标志物。1 mg/L的[C6mim]Br可引起藻细胞的氧化胁迫,具有环境毒性。  相似文献   

2.
This study investigates the development of the Egyptian strain of Schistosoma haematobium and the resultant immunohistopathology and biochemical changes in organs affected. In addition, the response of different developmental stages of S. haematobium worms to praziquantel (PZQ) was examined. Schistosoma haematobium-infected hamsters were classified into 4 groups and were treated at day 35, 55, 75, and 95 postinfection (PI), respectively. Each group was subdivided into 3 subgroups. Two of them were treated orally with PZQ (300 mg/kg or 500 mg/kg divided equally on 2 consecutive days), and the third group was left without treatment. Treated groups were killed 20 days posttreatment. Infection with S. haematobium became patent 73 days PI; tissue egg load and worm fecundity were higher at 95 days and maximal 115 days PI, with an oogram pattern comparable to that in Schistosoma mansoni infection. In the liver, small cellular granulomas were observed 75 days PI, with preponderance of CD4+ T-cell phenotypes. In the urinary bladder, only submucosal focal Brunn's-nest formation and angiogenesis without typical granulomas were observed. Ninety-five and 115 days PI, confluent granulomata with multiple eggs in the center were observed in the liver and urinary bladder, with a preponderance of CD8+ positive T cells in the liver and hyperplasia of the urinary bladder epithelium with cystitis cystica and papillae formation. One hundred percent worm eradication was recorded with the higher dose of PZQ in animals treated 75 and 95 days PI. In conclusion, in spite of the long prepatent period of the Egyptian strain of S. haematobium, sensitivity to PZQ was recorded soon after infection. Granulomata were similar to those of S. mansoni in the livers and urinary bladders, but they were confluent with multiple eggs in the centers, hyperplasia of the urinary bladder urothelium with cystitis cystica, papillae, and Brunn's-nest formation predictive of malignant changes with no hepatocyte dysplasia.  相似文献   

3.
The present study investigated the protective effect of gossypol, selenium, zinc, or glutathione (GSH) against dimethylnitrosamine (DMN)‐induced hepatotoxicity in the livers of male mice. The expression and the activity of glutathione S‐transferase (GST), levels of GSH, and free radicals (malondialdehyde (MDA)), as well as the activity of glutathione reductase were determined after the treatment of mice for seven consecutive days with low or high doses of gossypol, selenium, zinc, or GSH. In experimental groups, DMN was administered as a single dose for 2 h after the repeated dose treatments of mice for seven consecutive days with each antioxidant. DMN reduced the expression and inhibited the activity of GST. However, repeated treatments of mice with low‐dose gossypol or high dose of either selenium or GSH followed by a single dose of DMN induced the expression and the activity of GST. In contrast, low‐dose treatments of mice with zinc, selenium, or GSH followed by a single dose of DMN reduced the expression and the activity of GST compared to either control or DMN‐treated groups. In addition, high‐dose treatment with either gossypol or selenium markedly induced the levels of GSH compared to either control or DMN‐treated groups. Interestingly, pretreatment of mice with high dose of either gossypol or selenium for seven consecutive days followed by a single dose of DMN decreased the levels of MDA, whereas DMN induced such levels. It is concluded that high dose of either gossypol or selenium is a stronger protector than zinc and GSH in ameliorating the toxic effects of DMN. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:389–395, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20255  相似文献   

4.
Asbestos and its carcinogenic properties have been extensively documented. Asbestos exposure induces diverse cellular events associated with lung injury. Previously, we have shown that treatment with chrysotile shows significant alteration in phase I and phase II drug metabolizing enzyme system. In this study we have examined some potential mechanisms by which garlic treatment attenuates chrysotile-mediated pulmonary toxicity in rat. Female Wistar rats received an intratracheal instillation of 5 mg chrysotile (0.5 mL saline) as well as intragastric garlic treatment (1% body weight (v/w); 6 days per week). Effect of garlic treatment was evaluated after 1, 15, 30, 90, and 180 days by assaying aryl hydrocarbon hydroxylase (AHH), glutathione (GSH), glutathione S-transferase (GST), and production of thiobarbituric acid reactive substances (TBARS) in rat lung microsome. The results showed that AHH and TBARS formation were significantly reduced at day 90 and day 180 in chrysotile treated garlic cofed rats; GSH recovered 15 days later to the near normal level and GST elevated significantly after treatment of garlic as compared to chrysotile alone treated rat lung microsome. The data obtained shows that inhibition of AHH activity and induction of GST activity could be contributing factor in chrysotile-mediated pulmonary toxicity in garlic cofed rats. However, recovery of GSH and inhibition of TBARS formation by garlic and its constituent(s) showed that garlic may give protection by altering the drug metabolizing enzyme system.  相似文献   

5.
Thiopropyl Sepharose 6B in the 2-thiopyridyl-activated form was used for the reversible immobilisation of reduced glutathione (GSH). The resulting affinity matrix was successfully tested as a sorbent for the partial purification of glutathione S-transferase (GST) from pig kidney. The specific elution of the enzyme was performed with 10 mM GSH in Tris-HCl buffer (pH 7.8), non-specific elution with 20 mM dithiotreitol (DTT) in the same buffer.  相似文献   

6.
This study aimed to estimate reactive oxygen species (ROS) production, antioxidants activity, and biomarkers level of oxidative damage to protein and DNA in the cerebrospinal fluid (CSF) of C57BL/6 mice infected with Angiostrongylus cantonensis. The mean ROS concentration in the CSF of infected mice increased gradually, and the increase in ROS in CSF became statistical significance at days 12-30 post-infection compared to that before infection (< 0.001), and then ROS returned to normal level at day 45 after infection. In parallel with the increase in ROS in the CSF, infected mice showed similar of changes in reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST) as that in ROS in the CSF. GSH, GR, GPx, and GST in the CSF of infected mice were all significantly higher than they were before infection during days 12-30 post-infection. However, protein carbonyl content and 8-hydroxy-2′-deoxyguanosine, biomarkers of oxidative damage to protein and DNA, respectively, were also significantly higher in the CSF of infected mice during this period. These results suggest that oxidative stress occur in the cells of central nervous system of mice infected with A. cantonensis during days 12-30 after infection due to ROS overproduction in CSF despite the increase in antioxidants during this period.  相似文献   

7.
This study examined, in the liver of young and old (3- and 24-month-old, respectively) healthy Wistar rats, the in vivo effect of dehydroepiandrosterone (DHEA) (10mg/kg body weight) administered subcutaneously for 5 weeks. Reduced (GSH) and oxidized (GSSG) glutathione levels, glucose-6-phosphate dehydrogenase (G6PDH), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and catalase (CAT) activities, hydrogen peroxide concentration, GST and p-Akt/Akt immunocontent ratio were assessed in hepatic tissue. DHEA treatment significantly increased total glutathione content (17%) and GSH (22%) in 3- and 24-month-old treated groups when compared to control groups. The aging factor increased G6PDH (51%) and GPx (22%) activities as well as the hydrogen peroxide concentration (33%), independently of treatment. DHEA treatment increased p-Akt (54%) and p-Akt/Akt ratio (36%) immunocontents in both treated groups. Increased serum levels of alanine aminotransferase (ALT) in aged rats were reduced by DHEA treatment (34%).  相似文献   

8.
Summary Reduced glutathione (GSH) levels and glutathione reductase (GR) and glutathione S-transferase (GST) activities were investigated in the erythrocytes and lymphocytes of non-dialyzed patients with varying degrees of chronic renal insufficiency, and also of patients on regular hemodialysis treatment. GSH, GR and GST levels were higher in erythrocytes and lymphocytes of examined patients as compared to their corresponding age-matched healthy controls. A correlation was found between the degree of renal insufficiency and the above parameters tested. A routine hemodialysis did not significantly affect erythrocyte and lymphocyte GSH content and activities of its associated enzymes. The increased GSH levels as well as GSH-linked enzyme activities of blood cells in uremia may be a protective mechanism for the cells due to the accumulation of toxic, oxidizing, wastes in the blood as a result of the uremic state. This view is supported by the results ofin vitro experiments, which have shown that GR and GST activities of normal human lymphocytes are increased when incubated with plasma from uremic patients.  相似文献   

9.
昆虫谷胱甘肽S-转移酶分离纯化的新方法   总被引:4,自引:0,他引:4  
谷胱甘肽S-转移酶(glutathioneS-transferases,GST)是一类具有多种生理功能的同功酶.从蜡螟幼虫(Galeriamelonela)的提取液中分离纯化谷胱甘肽S-转移酶的基本方法如下:首先将冷冻的蜡螟幼虫在磷酸缓冲液中匀桨,经10000g和100000g分级离心;取上清液通过QAE-SephadexA-25离子交换柱层析除去部分色素和杂蛋白;然后采用谷胱甘肽-琼脂糖凝胶亲和层析(GSH-QT4),四溴酚酞二磺酸盐-琼脂糖凝胶亲和层析(BSP-QT4),铜离子-琼脂糖凝胶螯合层析(Cu2+-QT4)及PBE94-Sepharose(PBE94)聚焦层析等层析技术进一步分离纯化.将上述方法获得的色谱峰以CDNB和DCNB为底物检测生物活性.具有生物活性部分的蛋白质,通过SDS-PAGE测定其分子量.实验结果表明,采用GSH-QT4亲和层析法获得的活性峰,在SDS-PAGE图谱上呈现出两条带,分子量为24kD,24.5kD左右;Cu2+-QT6螯合层析法分离的活性峰,呈现出一条带,分子量为24kD左右;PBE94-聚焦层析法分离获得三个活性峰:第一色谱峰,呈现出一条带,分子量为23kD左右  相似文献   

10.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

11.
The haloacetonitrile, dibromoacetonitrile (DBAN), is a direct-acting genotoxic agent that has been detected in drinking water. In a time course study, male Sprague-Dawley rats were treated with DBAN (75 mg/kg PO), and killed at 0.5, 1, 2, and 4 hr after treatment. In a dose response study, animals were treated orally with various doses of DBAN (25, 50, 75, and 100 mg/kg) and killed at one-half hour after treatment. Control animals received 1 ml/kg PO of the vehicle dimethyl sulfoxide (DMSO). In both experiments blood and organs were collected and stored at -80 degrees C until the time of analysis. At 0.5 hr after treatment, a single oral dose of DBAN caused a significant decrease of glutathione (GSH) concentrations in liver (54% of control) and stomach (6% of control). Hepatic GSH depletion was maximal at 0.5 hr and rebound to the control levels by 4 hr. In contrast, gastric GSH concentrations remained low at all time points. DBAN caused an insignificant change in both kidney and blood GSH levels. DBAN significantly inhibited glutathione-S-transferase (GST) activity in liver and stomach. Hepatic GST inhibition was maximal (34% of control) at 2 hr and minimal (80% of control) at 4 hr. Meanwhile, in the stomach GST activity was inhibited at 1 hr (60% of control) and remained low at all times after treatment. Both GSH depletion and GST inhibition were dose-dependent. This study indicates that GSH and GST play an important role in the metabolism and detoxification of DBAN in rats. The prolonged depletion of GSH and inhibition of GST in the gastrointestinal (GI) tissues suggest that the GI tract is a major target for DBAN toxicity.  相似文献   

12.
The safener-induced maize (Zea mays L.) glutathione S-transferase, GST II (EC 2.5.1.18) and another predominant isoform, GST I, were purified from extracts of maize roots treated with the safeners R-25788 (N,N-diallyl-2-dichloroacetamide) or R-29148 (3-dichloroace-tyl-2,2,5-trimethyl-1,3-oxazolidone). The isoforms GST I and GST II are respectively a homodimer of 29-kDa (GST-29) subunits and a heterodimer of 29 and 27-kDa (GST-27) subunits, while GST I is twice as active with 1-chloro-2,4-dinitrobenzene as GST II, GST II is about seven times more active against the herbicide, alachlor. Western blotting using antisera raised against GST-29 and GST-27 showed that GST-29 is present throughout the maize plant prior to safener treatment. In contrast, GST-27 is only present in roots of untreated plants but is induced in all the major aerial organs of maize after root-drenching with safener. The amino-acid sequences of proteolytic fragments of GST-27 show that it is related to GST-29 and identical to the 27-kDa subunit of GST IV.Abbreviations CDNB 1-chloro-2,4-dinitrobenzene - DEAE di-ethylaminoethyl - FPLC fast protein liquid chromatography - GSH reduced glutathione - GST glutathione S-transferase - GST-26 26-kDa subunit of maize GST - GST-27 27-kDa subunit of maize GST - GST-29 29-kDa subunit of maize GST - R-25788 safener N,N-diallyl-2-dichloroacetamide - R-29148 safener 3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidone - RPLC reverse phase liquid chromatography We are grateful to M-M. Lay, ZENECA AG Products (formerly ICI Americas), Richmond, Calif., USA for providing [14C] R-25788. ZENECA Seeds in the UK is part of ZENECA Limited.  相似文献   

13.
Although the involvement of oxidative mechanisms in the cytotoxicity of excitatory amino acids has been well documented, it is not known whether the intrastriatal injection of quinolinic acid (QA) induces changes in glutathione (GSH) metabolism. In this work, the activities of the enzymes GSH reductase (GRD), GSH peroxidase (GPX), and GSH S-transferase (GST), as well as the GSH content, were studied in the striatum, hippocampus, and frontal cortex of rats 1 and 6 weeks following the intrastriatal injection of QA (225 nmol). One group of animals remained untreated. This lesion resulted in a 20% decrease in striatal GRD activity at both the 1- and 6-week postlesion times, whereas GST exhibited a 30% activity increase in the lesioned striatum observable only 6 weeks after the lesion. GPX activity remained unchanged. In addition, the QA injection elicited a 30% fall in GSH level at the 1-week postlesion time. GSH related enzyme activities and GSH content from other areas outside the lesioned striatum were not affected. GST activation could represent a beneficial compensatory response to neutralize some of the oxidant agents generated by the lesion. However, this effect together with the reduction in GRD activity could be the cause or a contributing factor to the observed QA-induced deficit in GSH availability and, consequently, further disrupt the oxidant homeostasis of the injured striatal tissue. Therefore, these results provide evidence that the in vivo excitotoxic injury to the brain might affect oxidant/antioxidant equilibrium by eliciting changes in glutathione metabolism.  相似文献   

14.
L-buthionine-S,R-sulfoximine (BSO) selectively inhibits glutathione (GSH) synthesis. Malignant melanoma may be uniquely dependent on GSH and its linked enzymes, glutathione S-transferase (GST) and GSH-peroxidase, for metabolism of reactive orthoquinones and peroxides produced during melanin synthesis. We compared the in vitro effects of BSO on melanoma cell lines and fresh melanoma specimens (n = 118) with breast and ovarian cell lines and solid tumors (n = 244). IC50 values (μM) for BSO on melanoma, breast and ovarian tumor specimens were 1.9, 8.6, and 29, respectively. The IC90 for melanoma was 25.5 μM, a level 20-fold lower than steady state levels achieved clinically. The sensitivity of individual specimens of melanoma correlated with their melanin content (r = 0.63). BSO synergistically enhanced BCNU activity against melanoma cell lines and human tumors. We followed GSH levels, GST enzyme activity, GST isoenzyme profiles and mRNA levels after BSO. BSO (50 μM) treatment for 48 hr resulted in a 95% decrease in ZAZ and M14 melanoma cell line GSH levels, and a 60% decrease in GST enzyme activity. GST-μ. protein and mRNA levels were significantly reduced in both cell lines. GST expression was unaffected. These data suggest that BSO action on melanoma may be related to GSH depletion, diminishing the capacity to scavenge toxic metabolites produced during melanin synthesis. We report here for the first time that BSO enhancement of alkylator action may be related in part to down regulation of GST. BSO may be a clinically useful adjunct in the treatment of malignant melanoma.  相似文献   

15.
Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar–Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.  相似文献   

16.
Sulfotransferase catalyzed sulfation is important in the regulation of different hormones and the metabolism of hydroxyl containing xenobiotics. In the present investigation, we examined the effects of hyperoxia on aryl sulfotransferase IV in rat lungs in vivo. The enzyme activity of aryl sulfotransferase IV increased 3- to 8-fold in >95% O2 treated rat lungs. However, hyperoxic exposure did not change the mRNA and protein levels of aryl sulfotransferase IV in lungs as revealed by Western blot and RT-PCR. This suggests that oxidative regulation occurs at the level of protein modification. The increase of nonprotein soluble thiol and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios in treated lung cytosols correlated well with the aryl sulfotransferase IV activity increase. In vitro, rat liver cytosol 2-naphthol sulfation activity was activated by GSH and inactivated by GSSG. Our results suggest that Cys residue chemical modification is responsible for the in vivo and in vitro oxidative regulation. The molecular modeling structure of aryl sulfotransferase IV supports this conclusion. Our gel filtration chromatography results demonstrated that neither GSH nor GSSG treatment changed the existing aryl sulfotransferase IV dimer status in cytosol, suggesting that oxidative regulation of aryl sulfotransferase IV is not caused by dimer-monomer status change.  相似文献   

17.
The hGSTM1 null genotype has been associated with increased susceptibility to urinary bladder cancer. However, the extent to which the GSTM1 subunit actually contributes to GST activities in mammalian urinary bladders is not clear. For adult mice, urinary bladders exhibited GST activity which was among the highest observed in the tissues tested. The mouse bladder GST activity with the 1-chloro 2,4-dinitrobenzene substrate was also more than 10-fold greater than that of rat and human bladders. A large increase in mouse bladder GST activity occurs during early development with the sharpest increase between 7 and 17 days of age. Subunit compositions of GSTs in adult mouse, human, and rat bladders are also markedly different. The mGSTM1 subunit is by far the predominant GST in mouse bladder, with increases in mGSTM1 between 7 and 17 days accounting for the sharp rise in GST activity during maturation. By contrast, Pi class GSTs predominate in both human and rat bladders. Investigators seeking to establish direct connections between susceptibility to bladder cancer and the hGSTM1 gene deletion should take into account the fact that the hGSTM1 subunit, even when present, represents a very minor fraction of the GST protein in human bladder.  相似文献   

18.
Intravesical BCG administration is used as an adjuvant therapy after transurethral resection for superficial bladder cancer in man. The mechanisms of its antitumor activity are not known. The aim of this study was to characterize the histomorphological changes in various organs of the guinea pig after intravesical BCG administration. The BCG preparation used was BCG-RIVM, a Dutch BCG preparation. Instillations were performed in previously undamaged bladders weekly for 6 consecutive weeks and lasted 30 min or 1 h. Different doses were used ranging from 10(3) culturable particles (c.p.) to 5 x 10(7) c.p. of BCG. After 6 weeks, the animals were killed and postmortem examination was performed. The bladder wall, retroperitoneal lymph nodes, spleen, liver, lungs and distant lymph nodes were examined histologically. The BCG therapy, with a dose of 10(6) culturable particles and higher, induced an inflammatory reaction consisting of mononuclear infiltrates in the subepithelial tissue of the bladder wall. In approximately 50% of the animals investigated, the infiltrates were accompanied by non-caseating granulomatous lesions indicated by the presence of epithelioid cells. In general, the epithelial layer of the bladder showed no visible alterations. Similarly, a granulomatous inflammatory reaction was observed in the first retroperitoneal (iliac) lymph nodes draining the bladder. Granulomatous lesions were occasionally also present in liver and lung. In three of the 29 animals investigated, lesions were present both in liver and lungs, and in two of these three animals a granulomatous reaction was observed in the spleen and distant lymph nodes indicating a generalized inflammatory response induced by BCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Glutathione S-transferases (GSTs) are involved in detoxification of xenobiotic compounds and in the biosynthesis of important metabolites. All GSTs activate glutathione (GSH) to GS(-); in many GSTs, this is accomplished by a Tyr at H-bonding distance from the sulfur of GSH. The high-resolution structure of GST from Schistosoma haematobium revealed that the catalytic Tyr occupies two alternative positions, one external, involving a pi-cation interaction with the conserved Arg21, and the other inside the GSH binding site. The interaction with Arg21 lowers the pK(a) of the catalytic Tyr10, as required for catalysis. Examination of several other GST structures revealed the presence of an external pocket that may accommodate the catalytic Tyr, and suggested that the change in conformation and acidic properties of the catalytic Tyr may be shared by other GSTs. Arginine and two other residues of the external pocket constitute a conserved structural motif, clearly identified by sequence comparison.  相似文献   

20.
1. Constitutive and ethoxyquin hydrochloride (EQ-HCl)-induced hepatic glutathione (GSH) S-transferase, GSH reductase, and GSH peroxidase activities were determined in 5 strains of 8-10 week old inbred male mice. 2. The constitutive GSH S-transferase (GST) activity varied from 2.9 (SJL/JCR) to 8.9 (C57BL/6NCR) mumol product formed/min/mg protein and the corresponding values for the EQ-HCl-treated mice were in the range of 15.3-25.3 mumol product formed/min/mg protein. 3. EQ-HCl induced GST activity in all the strains examined and this contrasted to the induction activity of Aroclor 1254 which was strain-dependent. GST activity was induced 2.9-fold in Aroclor 1254-responsive (C57BL/6) and 2.8-fold in non-responsive (DBA/2) mice, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号