首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of an electrode microwave discharge in hydrogen at pressures of 1–8 torr and incident powers of 20–100 W is studied using optical spectroscopy. A two-dimensional computer code is developed for self-consistently simulating a self-sustained steady-sate electrode microwave discharge ignited at the end of the inner conductor of a coaxial line. The model is based on simultaneously solving time-dependent Maxwell’s equations, the balance equations for charged particles, and a homogeneous Boltzmann equation. The numerical results referring to the electrode region of the discharge are in fair agreement with the experimental data. This confirms the early suggestion (inferred from experimental data) of the combined “self-sustained-non-self-sustained” character of the electrode discharge. It is shown that the self-sustained discharge domain is located in the electrode region of the discharge.  相似文献   

2.
The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.  相似文献   

3.
The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.  相似文献   

4.
The effect of the dc electric field on the near-surface plasma of an electrode microwave discharge at pressures of 1?C5 Torr was studied by the emission spectroscopy method. It is shown that the dc field weakly affects the vibrational distribution of nitrogen molecules in the C3??u state, but changes the structure of the near-surface plasma (shifting the intensity maxima of the emission bands) and the strength of the microwave field near the electrode surface. It is also found that the ratio between the intensities of bands of different sequences of the second positive system of nitrogen radiated from the same state depends on the position along the discharge axis.  相似文献   

5.
Results are presented from one-dimensional quasistatic simulations of steady microwave discharges in a spherically symmetric electrode system in nitrogen at pressures of 1–8 Torr. The computational model includes the equation for calculating the electric field strength in the quasistatic approximation, Poisson’s equation, the balance equations describing the kinetics of charged and neutral plasma particles, and the time-independent homogeneous Boltzmann equation for electrons. The processes involving vibrationally excited particles are taken into account by the familiar analytic expression for the vibrational distribution of molecules in the diffusion approximation. It is shown that, because of the electric field nonuniformity, the physical properties (in particular, the plasma ion composition) are different in different discharge regions.  相似文献   

6.
The decay of air plasma produced by a high-voltage nanosecond discharge at room temperature and gas pressures in the range of 1–10 Torr was studied experimentally and theoretically. The time dependence of the electron density was measured with a microwave interferometer. The initial electron density was about 1012 cm−3. The discharge homogeneity was monitored using optical methods. The dynamics of the charged particle densities in the discharge afterglow was simulated by numerically solving the balance equations for electron and ions and the equation for the electron temperature. It was shown that, under these experimental conditions, plasma electrons are mainly lost due to dissociative and three-body recombination with ions. Agreement between the measured and calculated electron densities was achieved only when the rate constant of the three-body electron-ion recombination was increased by one order of magnitude and the temperature dependence of this rate constant was modified. This indicates that the mechanism for three-body recombination of molecular ions differs from that of the well-studied mechanism of atomic ion recombination.  相似文献   

7.
The structure of a discharge induced by a coaxial microwave plasmatron with a gas-supply channel in the inner electrode of a coaxial waveguide is investigated. A plasmatron with a power of up to 10 W operates at a frequency of 10 GHz. Depending on the operation regime, the discharge takes either a filament or torch form. A plasma filament arises at low flow rates of the working gas (argon) and occurs at the border of the potential core of the gas jet. A torch discharge occurs at high flow rates and has the form of a hollow cone. In both cases, the discharge arises in the potential core of the gas jet and does not spread beyond it. The distribution of the microwave field in the discharge plasma is determined.  相似文献   

8.
The electrode region of an electrode microwave discharge in hydrogen at pressures of 0.5–4 torr and absorbed powers of up to 12 W is studied using emission spectroscopy and actinometry. It is shown that the gas temperature is at most 700 K and the degree of dissociation does not exceed several percent. Direct electron impact is shown to be the main factor governing all the processes in the electrode region of the discharge, including the excitation of the recorded emission. In particular, the Balmer-series Hα line emission is related to the dissociative electron-impact excitation of hydrogen molecules in the ground state.  相似文献   

9.
The structure of electrode microwave (2.45 GHz) discharges in hydrogen with electrodes of various shapes and sizes at pressures of 1–8 torr and incident powers of 2–150 W is studied. It is found that the discharges exhibit a common feature that is independent of the antenna-electrode design: near the electrode surface, there is a thin bright sheath surrounded by a less bright, sharply bounded region, which is usually shaped like a sphere. It is suggested that the structure observed arises because the microwave field maintaining the discharge is strongly nonuniform. Near the electrode, there exists a thin dense plasma sheath with a high electron density gradient. A strong dependence of the electron-impact excitation coefficient on the electric field makes the effect even more pronounced. As the electron density decreases due to dissociative recombination, the microwave field gradient decreases and the discharge emission intensity tends to a nearly constant value. Presumably, in the boundary region of the discharge, there exists a surface wave, which increases the emission intensity at the periphery of the discharge.  相似文献   

10.
Arrays of aligned carbon nanotubes on silicon substrates were grown in the anode sheath of a dc glow discharge. In order to clarify the role of the electric field in the growth of nanotubes, numerical simulations of charged particle transport in the anode sheath were carried out in the drift-diffusion approximation. The distributions of the charged particle density and electric field are obtained. Possible mechanisms whereby the electric field influences the growth of aligned carbon nanotubes are analyzed. It is found that the nanotubes grow in the region in which the electric field is enhanced due to the depletion of positive ions in the anode sheath.  相似文献   

11.
A method is proposed for determining the electron density N e and the electric field E in the non-equilibrium nitrogen plasma of a low-pressure discharge from the spectra of the second positive system of N2. The method is based on measuring the specific energy deposition in the plasma and the distribution of nitrogen molecules over the vibrational levels of the C 3Π u state, as well as on modeling this distribution for a given energy deposition. The fitting parameters of the model are the values of N e and E. A kinetic model of the processes governing the steady-state density of the C 3Π u nitrogen molecules is developed. The testing of this method showed it to be quite reliable. The method is of particular interest for diagnosing electrodeless discharges and provides detailed information on the processes occurring in the discharge plasma. Preliminary data are obtained on the plasma parameters in a cavity microwave discharge and an electrode microwave discharge. In particular, it is found that the electric field in an electrode microwave discharge in nitrogen is lower than that in a hydrogen discharge. This effect is shown to be produced by stepwise and associative processes with the participation of excited particles in nitrogen.  相似文献   

12.
The parameters of the plasma of a microwave electrode discharge in hydrogen at pressures of 1–8 torr and incident powers of 20–80 W are measured by the so-called “relative intensity” method. The method allows one to determine the electron density and electric field in plasma by measuring the relative intensities of the Hα, Hβ, and 763.5-nm Ar line emission and calculating the electron-impact rate constants from the homogeneous Boltzmann equation. The measurements show that there are regions in the discharge where the electron density is higher (a bright electrode sheath) and lower (a spherical region) than the critical density for the frequency 2.45 GHz (ncr~7×1010 cm?3). Inside the spherical region, the electric field varies slightly over the radius and the electron density increases as the discharge boundary is approached. The observed discharge structure can be attributed to the presence of a self-sustained discharge zone (electrode sheath); a non-self-sustained discharge zone (spherical region); and a decaying plasma region, which is separated from the active discharge zone by an electric double layer.  相似文献   

13.
Parameters of an equilibrium microwave discharge in an atmospheric-pressure argon flow in a coaxial waveguide with a truncated inner electrode are calculated numerically by using a self-consistent two-dimensional MHD model. The results obtained agree satisfactorily with the experimental data.  相似文献   

14.
A Franco  Jr  B D Winegar    J B Lansman 《Biophysical journal》1991,59(6):1164-1170
Currents flowing through single stretch-inactivated ion channels were recorded from cell-attached patches on myotubes from mdx mice. Adding micromolar concentrations of gadolinium to patch electrodes containing normal saline produced rapid transitions in the single-channel current between the fully open and closed states. The kinetics of the current fluctuations followed the predictions of a simple model of open channel block in which the transitions in the current arise from the entry and exit of Gd from the channel pore: histograms of the open and closed times were well fit with single exponentials, the blocking rate depended linearly on the concentration of gadolinium in the patch electrode, and the unblocking rate was independent of the concentration of gadolinium. Hyperpolarizing the patch increased the rate of unblocking (approximately e-fold per 85 mV), suggesting the charged blocking particle can exit the channel into the cell under the influence of the applied membrane field. The rate of blocking was rapid and was independent of the patch potential, consistent with the rate of ion entry into the pore being determined by its rate of diffusion in solution. When channel open probability was reduced by applying suction to the electrode, the blocking kinetics were independent of the extent of inactivation, suggesting that mechanosensitive gating does not modify the structure of the channel pore.  相似文献   

15.
A new type of plasma electron-emitting source capable of increasing the temperature of plasma electrons behind the edge of a stationary plasma thruster (SPT) to 7–15 eV has been developed and investigated experimentally. For the same parameters of the main discharge, the thrust, the thrust efficiency, the mass use factor, and the lifetime of the “SPT anode unit-plasma electron-emitting source” assembly are found to increase substantially as compared to a thruster equipped with a conventional cathode compensator. Simultaneously, the neutral particle pressure required for the existence of self-consistent distributions of the electric field and charged particle density in the drift space of the neutralized ion beam decreases appreciably. It is shown that the volume of the region in which primary slow ions are produced increases with increasing ionization frequency. Three additional channels for discharge control are implemented. The ranges in which the discharge parameters can be controlled are extended.  相似文献   

16.
The gas temperature in an electrode microwave discharge in hydrogen at pressures of 1–8 torr and input powers of 20–90 W is determined from the relative intensities of the rotational lines of the electronically excited molecules of the Fulcher α system of molecular hydrogen. It is found that the gas temperature in the discharge is no higher than 800 K over the entire range of the experimental conditions under study. For this reason, plasma resonance cannot be regarded as a factor determining the physical processes in the discharge over the entire pressure range. Since the discharge unit is a nonuniform gas-dynamic system (the gas is fed through a small hole into a chamber of limited size), there is a possibility of generating vortex flows that intensively mix the gas. This results in a uniform distribution of the gas temperature throughout the entire volume of the spherical plasma structure produced in the experiment.  相似文献   

17.
Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.  相似文献   

18.
The radiation of the second positive nitrogen system has been used to study the spatial dependence of the vibrational distribution of nitrogen molecules in the C3Πu state in the near-surface plasma layer of an electrode microwave discharge in nitrogen at pressures of 1–5 Torr. It has been shown that the vibrational distribution changes at a scale of 100 μm. It has been concluded that this state is populated owing to the electron impact from the ground state. The possibility of using the local approximation for the electron energy distribution function to explain the experimental results has been analyzed.  相似文献   

19.
A one-dimensional drift model of the cathode region of a glow discharge with allowance for both electron-impact ionization and charged particle loss is proposed. An exact solution to the model equations is obtained for the case of similar power-law dependences of the ion and electron drift velocities on the electric field strength. It is shown that, even in the drift approximation, a relatively wide transition layer in which the ion-to-electron current ratio approaches a constant value typical of the positive column of a glow discharge should occur between the thin space-charge sheath and the quasineutral plasma, the voltage drop across the space-charge sheath being comparable to that across the transition layer. The calculated parameters of the normal and anomalous glow discharges are in good agreement with available experimental data.  相似文献   

20.
This paper focuses on consequences of erosion processes on the water quality in a small catchment mainly used for agriculture. Due to the silty soils with small infiltration capacity and some steep slopes, much suspended sediment is carried with the surface runoff into the river. To gain detailed knowledge about the dynamic of suspended particle concentration in the stream, particularly the intensity and the duration of the pollution, continual measurements of turbidity and conductivity have been done. Additionally water samples have been automatically taken regulated by the streamflow and have been analysed in the lab to determine the particle concentration and some dissolved chemical substances such as nitrate and heavy metals. From those measurements a regression between turbidity and suspended particle concentration was derived as basis to calculate suspended load. Results showed a typical hysteresis with bigger particles being transported within the fast rising limb than in the falling limb of the flood waves. Moreover, it was also found, that nitrate concentration was lower during the summer and early autumn than in spring with the same discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号