首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
The basic properties of heavy-ion-acoustic (HIA) waves have been investigated in a collisionless plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The Kortewg-de Vries and Burgers equations are derived in nonplanar (cylindrical and spherical) geometry by employing the standard reductive perturbation method for studying the basic features (viz. amplitude, phase speed, etc.) of HIA solitary and shock waves, which are associated with either positive or negative potential. It is found that the effects of nonplanar geometry, adiabaticity of positively charged inertial heavy ions, the presence of nonthermal (Cairns distributed) electrons, and number densities of the plasma components significantly modify the basic features of nonplanar HIA waves. It has been observed that the properties of solitary and shock waves associated with HIA waves in a nonplanar geometry differ from those in a planar geometry. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments.  相似文献   

2.
The nonlinear propagation of ion-acoustic (IA) waves in a strongly coupled plasma system containing Maxwellian electrons and nonthermal ions has been theoretically and numerically investigated. The well-known reductive perturbation technique is used to derive both the Burgers and Korteweg?de Vries (KdV) equations. Their shock and solitary wave solutions have also been numerically analyzed in understanding localized electrostatic disturbances. It has been observed that the basic features (viz. polarity, amplitude, width, etc.) of IA waves are significantly modified by the effect of polarization force and other plasma parameters (e.g., the electron-to-ion number density ratio and ion-to-electron temperature ratio). This is a unique finding among all theoretical investigations made before, whose probable implications are discussed in this investigation. The implications of the results obtained from this investigation may be useful in understanding the wave propagation in both space and laboratory plasmas.  相似文献   

3.
The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg?deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.  相似文献   

4.
The formation and propagation of small-amplitude heavy-ion-acoustic (HIA) solitary waves and double layers in an unmagnetized collisionless multicomponent plasma system consisting of superthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions are theoretically investigated. The reductive perturbation technique is employed to derive the modified Korteweg–de Vries (mKdV) and standard Gardner (SG) equations. The solitary wave (SW) solution of mKdV and SG equations, as well as double layers (DLs) solution of SG equation, is studied for analysis of higher order nonlinearity. It is found that the plasma system under consideration supports positive and negative potential Gardner solitons, but only positive potential mKdV solitons. In addition, it is shown that, the basic properties of HIA mKdV and Gardner solitons and DLs (viz. polarity, amplitude, width, and phase speed) are incomparably influenced by the adiabaticity effect of heavy ions and the superthermality effect of electrons. The relevance of the present findings to the system of space plasmas, as well as to the system of researchers interest, is specified.  相似文献   

5.
The propagation of ion-acoustic solitary waves (IASWs) in a magnetized collisionless degenerate plasma system for describing collective plasma oscillations in dense quantum plasmas with relativistically degenerate electrons, oppositely charged inertial ions, and positively charged immobile heavy elements is investigated theoretically. The perturbations of the magnetized quantum plasma are studied employing the reductive perturbation technique to derive the Korteweg–de Vries (KdV) and the modified KdV (mKdV) equations that admit solitary wave solutions. Chandrasekhar limits are used to investigate the degeneracy effects of interstellar compact objects through the equation of state for degenerate electrons in nonrelativistic and ultrarelativistic cases. The basic properties of small but finite-amplitude IASWs are modified significantly by the combined effects of the degenerate electron number density, pair ion number density, static heavy element number density, and magnetic field. It is found that the obliqueness affects both the amplitude and width of the solitary waves, whereas the other parameters mainly influence the width of the solitons. The results presented in this paper can be useful for future investigations of astrophysical multi-ion plasmas.  相似文献   

6.
The nonlinear characteristics of dust-electron-acoustic (DEA) waves in a dusty electronegative magnetoplasma system consisting of nonextensive hot electrons, inertial cold electrons, positively charged static ions, and negatively charged immobile dust grains has been investigated. In this observation, the well-known reductive perturbation technique is employed to determine different types of nonlinear dynamical equations, namely, magnetized Korteweg–de Vries (KdV), magnetized modified KdV (mKdV), and magnetized Gardner equations. The stationary solitary wave and double layer solution of these three equations, which describe the characteristics of solitary waves and double layers of DEA waves, are obtained and numerically analyzed. It is noticed that various plasma parameters (viz., hot electron nonextensivity, positive ion-to-cold electron number density ratio, dust-to-cold electron number density ratio, etc.) significantly affect the basic properties of DEA solitary waves (DEASWs) and Gardner solitons (GSs). The prodigious results found from this theoretical investigation may be useful for researchers to investigate the nonlinear structures in various space and laboratory plasmas.  相似文献   

7.
A rigorous theoretical investigation has been performed on the propagation of cylindrical and spherical Gardner solitons (GSs) associated with dust-ion-acoustic (DIA) waves in a dusty plasma consisting of inertial ions, negatively charged immobile dust, and two populations of kappa distributed electrons having two distinct temperatures. The well-known reductive perturbation method has been used to derive the modified Gardner (mG) equation. The basic features (amplitude, width, polarity, etc.) of nonplanar DIA modified Gardner solitons (mGSs) have been thoroughly examined by the numerical analysis of the mG equation. It has been found that the characteristics of the nonplanar DIA mGSs significantly differ from those of planar ones. It has been also observed that kappa distributed electrons with two distinct temperatures significantly modify the basic properties of the DIA solitary waves and that the plasma system under consideration supports both compressive and rarefactive DIA mGSs. The present investigation should play an important role for understanding localized electrostatic disturbances in space and laboratory dusty plasmas where stationary negatively charged dust, inertial ions, and superthermal electrons with two distinct temperatures are omnipresent ingredients.  相似文献   

8.
The effects of nonextensivity and nonthermality of ions of two distinct temperatures on dustacoustic Gardner solitons (DAGSs) in an unmagnetized dusty plasma system are investigated theoretically. The constituents of the dusty plasma under consideration are negatively charged mobile dust fluid, Boltzmann-distributed electrons, and ions of two distinct temperatures following nonextensive (q) and nonthermal distributions, respectively. The Korteweg-de Vries (KdV), modified KdV, and Gardner equations are derived by using the reductive perturbation technique, and thereby their characteristic features are compared. It is observed that both the nonextensive and nonthermal ions significantly modify the basic properties and polarities of dust-acoustic solitary waves. The present investigation may be of relevance to space and laboratory dusty plasma systems.  相似文献   

9.
Theoretical investigation is carried out for understanding the properties of nonlinear dust-acoustic (DA) waves in an unmagnetized dusty plasma whose constituents are massive, micron-sized, positive and negatively charged inertial dust grains along with q (nonextensive) distributed electrons and ions. The reductive perturbation method is employed in order to derive two types of nonlinear dynamical equations, namely, Burgers equation and modified Gardner equation (Gardner equation with dissipative term). They are also numerically analyzed to investigate the basic features (viz., polarity, amplitude, width, etc.) of shock waves and double layers. It has been observed that the effects of nonextensivity, opposite polarity charged dust grains, and different dusty plasma parameters have significantly modified the fundamental properties of shock waves and double layers. The results of this investigation may be used for researches of the nonlinear wave propagation in laboratory and space plasmas.  相似文献   

10.
The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the (G'/G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.  相似文献   

11.
The linear and nonlinear propagation of ultrarelativistic and nonrelativistic analysis on modified ion-acoustic (MIA) waves in a strongly coupled unmagnetized collisionless relativistic space plasma system is carried out. Plasma system is assumed to contain strongly coupled nonrelativistic ion fluids, both nonrelativistic and ultrarelativistic degenerate electron and positron fluids, and positively charged static heavy elements. The restoring force is provided by the degenerate pressure of the electron and positron fluids, whereas the inertia is provided by the mass of ions. The positively charged static heavy elements participate only in maintaining the quasineutrality condition at equilibrium. The well-known reductive perturbation method is used to derive the Burgers and Korteweg–de Vries equations. Their shock and solitary wave solutions are numerically analyzed to understand the localized electrostatic disturbances. The basic characteristics of MIA shock and solitary waves are found to be significantly modified by the effects of degenerate pressures of electron, positron, and ion fluids, their number densities, and various charge state of heavy elements. The implications of our results to dense plasmas in compact astrophysical objects (e.g., nonrotating white dwarfs, neutron stars, etc.) are briefly discussed.  相似文献   

12.
The modified Gardner equation (MGE), showing the existence of compressive and rarefactive dust-ion-acoustic (DIA) solitons in a nonplanar dusty plasma (containing inertial ions, Boltzmann electrons, and negatively charged stationary dust) beyond the KdV Korteweg-de Vries (KdV) limit, is derived and numerically solved. The basic features of the compressive and rarefactive cylindrical and spherical DIA solitons, which are found to exist beyond the KdV limit, i.e., exist for μ ∼ 2/3 (where μ = Z n n d0/n i0, z d is the number of electrons residing onto the dust grain surface, n d0(n i0) is the dust (ion) number density at equilibrium, and μ ∼ 2/3 means that μ is not equal to 2/3, but it is around 2/3) are identified. These solitons (which can be referred to as DIA Gardner solitons (DIA-GSs)) are completely different from the KdV solitons because μ = 2/3 corresponds to the vanishing of the nonlinear coefficient of the KdV equation, and μ ∼ 2/3 corresponds to extremely large amplitude KdV solitons for which the validity of the reductive perturbation method breaks down. It is also shown that the properties of the nonplanar (cylindrical and spherical) DIA-GSs are significantly different from those of the one dimensional planar ones.  相似文献   

13.
The characteristics of shock waves in a relativistic plasma in the presence of nonisothermal electrons and nonisothermal negative ions is investigated by deriving the evolution equation in terms of a modified 3D Burgers equation, or trapped 3D Burgers equation. The solution of this equation is examined analytically to study the salient characteristics of shock waves in such plasma. The nonlinear coefficient is found to have the lowest (highest) value when the negative ions move toward thermal equilibrium with a dip-shaped electron distribution (when both electrons and negative ions follow a dip-shaped distribution) for a particular value of relativistic factor, and it remains in an intermediate state when both electrons and negative ions follow a flat-topped distribution. On the other hand, the dissipative coefficient is found to decrease (increase) with increasing relativistic parameter (viscous parameter). A profound effect of the trapped state of both electrons and negative ions and the temperature ratio between positive ions and electrons (negative ions and electrons) on the structure of the shock wave is also seen. However, it has been noticed that the trapped parameter of electrons has a dominating control over the shock potential profile than the trapped parameter of negative ions.  相似文献   

14.
The problem of the evolution of a perturbation in a dusty plasma and its transformation into a nonlinear wave structure is considered. A computational method that allows one to solve the set of nonlinear evolutionary equations describing variable-charge dust grains, Boltzmann electrons, and inertial ions is developed. Exact steady-state solutions corresponding to ion-acoustic shock structures associated with anomalous dissipation originating from dust grain charging are found taking into account the effect of electron and ion charge separation. The role of this effect increases with the speed of the shock. The evolutions of an initial soliton (which is a steady-state wave solution in a plasma containing dust grains with a constant charge) and an initially immobile perturbation with a constant increased ion density are investigated. In a charge-varying dusty plasma, the soliton evolves into a nonsteady shock wave structure that propagates at a constant speed and whose amplitude decreases with time. The initially immobile perturbation with a constant increased ion density evolves into a shock structure similar to a steady-state shock wave. In the latter case, the compression shock wave is accompanied by a rarefaction region (dilatation wave), which finally leads to the destruction of the shock structure. The solution of the problem of the evolution of a perturbation and its transformation into a shock wave in a charge-varying dusty plasma opens up the possibility of describing real phenomena (such as supernova explosions) and laboratory and active space experiments.  相似文献   

15.
Chandra  S.  Sarkar  J.  Das  C.  Ghosh  B. 《Plasma Physics Reports》2021,47(3):306-317
Plasma Physics Reports - The formation and evolution of a Korteweg–de Vries (KdV) soliton in a dense quantum plasma consisting of electrons and ions is studied. The solitary profile is first...  相似文献   

16.
Bansal  S.  Aggarwal  M. 《Plasma Physics Reports》2019,45(11):991-996
Plasma Physics Reports - We consider nonplanar electron acoustic shock waves composed of stationary ions, cold and non-extensive hot electrons under multiple temperature electrons model in...  相似文献   

17.
A rigorous theoretical investigation has been made of obliquely propagating electrostatic solitary structures in a magnetized plasma, taking into account the effect of nonextensive electrons. By employing the reductive perturbation method, the basic characteristics of obliquely propagating ion-acoustic (IA) solitary waves (SWs) in a cold magnetized electron-ion plasma (consisting of inertial ions and noninertial q-distributed electrons) have been addressed. The Korteweg-de Vries equation is derived and its numerical solution is obtained. It has been shown that the effects of electron nonextensivity and external magnetic field significantly modify the natures of the small but finite-amplitude IA SWs. The present analysis may be useful to understand and demonstrate the dynamical properties of IA SWs in different astrophysical and cosmological scenarios (viz. stellar polytropes, hadronic matter, quark-gluon plasma, protoneutron stars, dark-matter halos, etc.).  相似文献   

18.
Effect of dust electrical charge fluctuations on the nature of dust acoustic solitary waves (DASWs) in a four-species magnetized dusty plasma containing nonextensive electrons and two-temperature isothermal ions has been investigated. In this model, the negative dust electric charge is considered to be proportional to the plasma space potential. The nonlinear Zakharov–Kuznetsov (ZK) and modified Zakharov–Kuznetsov (mZK) equations are derived for DASWs by using the standard reductive perturbation method. The combined effects of electron nonextensivity and dust charge fluctuations on the DASW profile are analyzed. The different ranges of the nonextensive q-parameter are considered. The results show that solitary waves the amplitude and width of which depend sensitively on the nonextensive q-parameter can exist. Due to the electron nonextensivity and dust charge fluctuation rate, our dusty plasma model can admit both positive and negative potential solitons. The results show that the amplitude of the soliton increases with increasing electron nonextensivity, but its width decreases. Increasing the electrical charge fluctuations leads to a decrease in both the amplitude and width of DASWs.  相似文献   

19.
Theoretical investigation has been made on obliquely propagating dust-acoustic (DA) solitary waves (SWs) in a magnetized dusty plasma which consists of non-inertial adiabatic electron and ion fluids, and inertial negatively as well as positively charged adiabatic dust fluids. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits a solitary wave solution for small but finite amplitude limit. It has been shown that the basic features (speed, height, thickness, etc.) of such DA solitary structures are significantly modified by adiabaticity of plasma fluids, opposite polarity dust components, and the obliqueness of external magnetic field. The SWs have been changed from compressive to rarefactive depending on the value of μ (a parameter determining the number of positive dust present in this plasma model). The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.).  相似文献   

20.
Obliquely propagating electron-acoustic solitary waves (EASWs) in a magnetized electron?positron?ion plasma (containing nonextensive hot electrons and positrons, inertial cold electrons, and immobile positive ions) are precisely investigated by deriving the Zakharov–Kuznetsov equation. It is found that the basic features (viz. polarity, amplitude, width, phase speed, etc.) of the EASWs are significantly modified by the effects of the external magnetic field, obliqueness of the system, nonextensivity of hot positrons and electrons, ratio of the hot electron temperature to the hot positron temperature, and ratio of the cold electron number density to the hot positron number density. The findings of our results can be employed in understanding the localized electrostatic structures and the characteristics of EASWs in various astrophysical plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号