首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial distributions of the electron temperature and density, the effective and average ion charges, and the thermal and directed ion velocities in current sheets formed in two-dimensional magnetic fields and three-dimensional magnetic configurations with an X line were studied using spectroscopic and interference holographic methods. The main attention was paid to studying the time evolution of the intensities of spectral lines of the working-gas (argon) and impurity ions under different conditions. Using these data, the electron temperature was calculated with the help of an original mathematical code based on a collisional-radiative plasma model incorporating the processes of ionization and excitation, as well as MHD plasma flows generated in the stage of the current-sheet formation. It is shown that the electron temperature depends on the longitudinal magnetic field, whereas the ion temperature is independent of it. The effective ion charge of the current-sheet plasma was determined for the first time.  相似文献   

2.
The processes of heating and acceleration of plasma in current sheets formed in 2D and 3D magnetic configurations with an X-line in helium plasma have been investigated using spectroscopic methods. It is found that, in 2D magnetic configurations, plasma flows with energies of 400?C1000 eV, which are substantially higher than the ion thermal energy, are generated and propagate along the width (the larger transverse dimension) of the sheet. In 3D configurations, the influence of the longitudinal (directed along the X-line) component of the magnetic field on the plasma parameters in the current sheet has been studied. It is shown that plasma acceleration caused by the Amp??re force can be spatially inhomogeneous in the direction perpendicular to the sheet surface, which should lead to sheared plasma flows in the sheet.  相似文献   

3.
The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampère force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.  相似文献   

4.
Based on measurements of magnetic fields in current sheets, spatial distributions of the electric current and electrodynamic forces in successive stages of the sheet evolution are determined. Two new effects manifesting themselves mostly in the late stages of the current sheet evolution have been discovered, namely, expansion of the current flow region at the periphery of the sheet and the appearance of a region with inverse currents, which gradually expands from the periphery toward the center of the sheet. Using spectroscopic methods, generation of superthermal plasma flows accelerated along the sheet width from the center toward the periphery has been revealed and investigated. The measured energies of accelerated plasma ions satisfactorily agree with the Ampère forces determined from magnetic measurements. The excitation of inverse currents additionally confirms the motion of high-speed plasma flows from the center of the current sheet toward its side edges.  相似文献   

5.
The energy of directed plasma flows accelerated in a current sheet is studied experimentally as a function of the current flowing through the sheet. It is found that the plasma flow energy rapidly increases with increasing current amplitude, nearly according to a power law with an exponent of 1.8–1.9. Using relations for the neutral current sheet and the concept of plasma acceleration under action of the Ampère forces, the energy of directed plasma flows is estimated as a function of the total current flowing through the sheet. It is shown that, as the current rises, the ion energy grows due to an increase in both the Ampère forces and the width of the current sheet within which plasma is accelerated.  相似文献   

6.
Dynamics of the thermal and directed motions of argon plasma ions in current sheets formed in various magnetic configurations was investigated experimentally Measurements in three-dimensional magnetic configurations with an X line were carried out for the first time. The results of these measurements were compared with the data obtained in experiments with two-dimensional magnetic configurations. The ion temperature and the energies and velocities of directed plasma flows within the current sheet were determined by analyzing the shapes of argon ion spectral lines broadened due to the Doppler effect. It is found that, under the given experimental conditions, the axial magnetic field does not affect the ion temperature and plasma acceleration in the sheet.  相似文献   

7.
Results are presented from experimental studies of ion heating in the GOL-3 device. The experiments were carried out in a multimirror configuration with a local magnetic well. It was found that, during the injection of a relativistic electron beam, a decrease in the local density of the beam in a magnetic well, which is proportional to the decrease in the strength of the longitudinal magnetic field, results in the formation of a short plasma region with a low electron temperature. The measured longitudinal gradient of the plasma pressure corresponds to an electron temperature gradient of ~2–3 keV/m. Axially nonuniform heating of the plasma electrons gives rise to the macroscopic motion of the plasma along the magnetic field in each cell of the multimirror confinement system. The mixing of the counterpropagating plasma flows inside each cell leads to fast ion heating. Under the given experimental conditions, the efficiency of this heating mechanism is higher than that due to binary electron-ion collisions. The collision and mixing of the counterpropagating plasma flows is accompanied by a neutron and γ-ray burst. The measured ratio of the plasma pressure to the vacuum magnetic field pressure in these experiments reaches 0.2.  相似文献   

8.
A system of kinetic equations describing relatively slow large-scale processes in collisionless magnetoplasma structures with a spatial resolution on the order of the proton thermal gyroradius is derived. The system correctly takes into account the electrostatic effects in the approximation of field-aligned force equilibrium for electrons. The plasma is considered quasineutral, and the magnetic field is described by the Ampère equation. The longitudinal component of the electric field is found explicitly from the equality of the field-aligned component of the electric force acting on plasma electrons and the divergence of the electron pressure tensor. The electric field component orthogonal to the magnetic field is determined by the distributions of the number densities, current densities, and stress tensors of all plasma species in the instantaneous long-range approximation described by a system of time-independent elliptic equations. Versions of the system of equations adapted to the case of magnetized electrons described by the Vlasov equation in the drift approximation, as well as to the case in which all plasma species are magnetized, are derived. The resulting systems of equations allow creating numerical models capable of describing large-scale processes in nonuniform collisionless space plasma.  相似文献   

9.
The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.  相似文献   

10.
Obliquely propagating electron-acoustic solitary waves (EASWs) in a magnetized electron?positron?ion plasma (containing nonextensive hot electrons and positrons, inertial cold electrons, and immobile positive ions) are precisely investigated by deriving the Zakharov–Kuznetsov equation. It is found that the basic features (viz. polarity, amplitude, width, phase speed, etc.) of the EASWs are significantly modified by the effects of the external magnetic field, obliqueness of the system, nonextensivity of hot positrons and electrons, ratio of the hot electron temperature to the hot positron temperature, and ratio of the cold electron number density to the hot positron number density. The findings of our results can be employed in understanding the localized electrostatic structures and the characteristics of EASWs in various astrophysical plasmas.  相似文献   

11.
Results are presented from experimental studies of the spatial electron density distribution in current sheets formed in three-dimensional magnetic configurations with X-lines. The electron density is measured by using two-exposure holographic interferometry. It is shown that plasma sheets can form in a magnetic configuration with an X-line in the presence of a sufficiently strong longitudinal magnetic-field component B when the electric current is excited along the X-line. As the longitudinal magnetic-field component increases, the electron density decreases and the plasma sheet thickness increases; i.e., the plasma is compressed into a sheet less efficiently.  相似文献   

12.
The spatiotemporal dynamics of plasma sheets formed in argon plasma in two- and three-dimensional magnetic configurations with an X-type singular line was studied using holographic interferometry. An analogy is revealed between the development of plasma sheets and the time evolution of the current sheet structure, which was previously studied using magnetic measurements. In the late stage of the sheet evolution, a change in the rotation direction of plasma sheets formed in 3D magnetic configurations was observed. Apparently, this is caused by a change in the direction of the Hall currents at the side edges of the current sheet.  相似文献   

13.
Particle-in-cell simulations show that the inhomogeneity scale of the plasma produced in the interaction of high-power laser radiation with gas targets is of fundamental importance for ion acceleration. In a plasma slab with sharp boundaries, the quasistatic magnetic field and the associated electron vortex structure produced by fast electron beams both expand along the slab boundary in a direction perpendicular to the plasma density gradient, forming an extended region with a quasistatic electric field, in which the ions are accelerated. In a plasma with a smooth density distribution, the dipole magnetic field can propagate toward the lower plasma density in the propagation direction of the laser pulse. In this case, the electron density in an electric current filament at the axis of the magnetic dipole decreases to values at which the charge quasineutrality condition fails to hold. In electric fields generated by this process, the ions are accelerated to energies substantially higher than those characteristic of plasma configurations with sharp boundaries.  相似文献   

14.
Laser spectroscopy diagnostics used in experiments on the PNX-U facility are described. The working gas was argon with an additive of helium. The 23 P → 33 D transition was excited by means of optical pumping, and helium fluorescence at wavelengths of 388 and 706.5 nm was observed. The Doppler temperature of helium atoms was determined by scanning the profile of the absorption line with the help of a tunable laser. The sum of the signals so obtained provides information on the local density of helium atoms. It was proposed to determine the local value of the electron density N e (R) from the ratio between the fluorescence intensities at wavelengths of 388 and 706.5 nm. The ratio of these intensities as a function of N e for He I was calculated in the collisional-radiative model, and relevant measurements of N e in the PNX-U facility were performed. When diagnosing the argon component, the main attention was paid to measurements of the ion temperature T i (R, t). In the course these measurements, anomalous heating of Ar II ions was revealed. The concentration of singly charged argon ions was estimated.  相似文献   

15.
The method of Feynman path integrals is used to calculate the degree of ionization in a thermodynamically equilibrium, dense helium plasma. A quantum statistical calculation which is based on the “first principles” and in which the permutation symmetry and electron spin variable are explicitly taken into account is carried out for a helium atom that is in thermal and mechanical contact with a plasma at a temperature from 30000 to 400000 K. Numerical integration over virtual paths is performed by the Monte Carlo method. When the temperature and density are varied, the amount of singly charged ions in a plasma varies nonmonotonically, reaching a maximum at a temperature of about 70 000 K and a pressure of 100 MPa. Radial profiles of the electron density around a helium nucleus are obtained, as well as contour lines of the degree of ionization in the p-T plane of the plasma states. The role of fluctuations is investigated. It is shown that the fluctuations of the local electron density near a helium ion have a radical effect on the values of the ionization-recombination equilibrium constants.  相似文献   

16.
Direct measurements of magnetic fields in a plasma show that current sheets can form in magnetic configurations with an X line in the presence of a longitudinal magnetic field. It is found that, in a plane perpendicular to the X line and to the direction of the main current, the current sheet has two very different dimensions. The tangential and normal components of the magnetic field and current density in the sheet are determined. The influence of the initial conditions (such as the strength of the longitudinal magnetic field, the gradient of the transverse field, and the plasma ion mass) on the current sheet parameters is investigated.  相似文献   

17.
Results are presented from measurements of the electron temperature and neutral atom density in a low-temperature microwave plasma by the method of emission spectroscopy. The measurements were conducted in the PNX-U facility—a magnetic confinement system with a “magnetic wall.” Multichord measurements of plasma radiation at a wavelength of 750.37 nm were performed with the help of an absolutely calibrated monochromator. The neutral atom density was calculated using the collisional-radiative model. The degree of plasma ionization near the axis of the facility was found to be close to unity. The electron temperature of the argon plasma was measured from the relative intensities of the spectral lines of neutral helium injected in small amounts into the plasma (the so-called helium thermometer method). At a low microwave heating power, the results of these measurements agree well with the results of probe measurements.  相似文献   

18.
The spatial distributions of the magnetic field, plasma density, and current at distances of (20–400)RS from the Sun (where RS is the solar radius) are investigated within a stationary axisymmetric MHD model of the solar wind (SW) at all latitudes in the inertial frame of reference with the origin at the center of the Sun. The model takes into account differential (with respect to the heliolatitude) rotation of the Sun and full corotation of plasma inside a boundary sphere of radius 20RS, which breaks down beyond this sphere. Self-consistent distributions of the plasma density, current, and magnetic field in the SW are obtained by numerically solving a set of time-independent MHD equations in spherical coordinates. It is demonstrated that the calculated results do not contradict observational data and describe a gradual transition from the fast SW at high heliolatitudes to the slow SW at low heliolatitudes, as well as the steepening of the profiles of the main SW characteristics with increasing distance from the Sun. The obtained dependences extend understanding of the SW structure at low and high latitudes and agree with the well-known Parker model in the limit of a small Ampère force.  相似文献   

19.
A nonisothermal model of the positive column allowing for electron energy balance is analyzed. The influence of the axial magnetic field on the characteristics of the cylindrical positive column of a low-pressure discharge is investigated in the hydrodynamic approximation. It is shown that the magnetic field affects the plasma density distribution, plasma velocity, and electron energies. The radial dependences of the plasma density, electron energy, and plasma velocity, as well as the azimuthal velocities of electrons and ions, are calculated for helium at different values of the magnetic field strength. It is established that inertia should be taken into account in the equations for the azimuthal motion of electrons and ions. The results obtained in the hydrodynamic approximation differ significantly from those obtained in the framework of the common diffusion model of the positive column in the axial magnetic field. It is shown that the distributions of the plasma density and radial plasma velocity in the greater part of the positive column tend to those obtained in the diffusion approximation at higher values of the axial magnetic field and gas density, although substantial differences remain in the near-wall region.  相似文献   

20.
Kyrie  N. P.  Frank  A. G.  Vasilkov  D. G. 《Plasma Physics Reports》2019,45(4):325-333
Plasma Physics Reports - The processes of heating and acceleration of argon ions in different charge states in current sheets formed in 2D and 3D magnetic configurations were studied...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号