首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic parameters of the plasma of a CuBr vapor laser with a molecular hydrogen additive are determined by time measurements of the plasma transmittance at probing frequencies close to the plasma frequency. The measurements were performed across the discharge at frequencies of 94 and 142 GHz within the time interval 2–85 μs. The measurement results are used to calculate the time dependences of the electron density, electron temperature, and electron momentum relaxation time.  相似文献   

2.
A repetitively rated microwave oscillator whose frequency can be varied electronically from pulse to pulse in a predetermined manner is created for the first time. The microwave oscillator has a power on the order of 108 W and is based on the Cherenkov interaction of a high-current relativistic electron beam with a plasma preformed before each pulse. Electronic control over the plasma properties allows one to arbitrarily vary the microwave frequency from pulse to pulse at a pulse repetition rate of up to 50 Hz.  相似文献   

3.
An analytic solution to the problem of skin effect in plasma is found for the first time by using a kinetic equation in which the collision frequency is proportional to the absolute value of the electron velocity. Mirror reflection of electrons from the plasma boundary is used as a boundary condition. The calculated expression for the impedance is compared with the classical one.  相似文献   

4.
A study is made of the modification of the spectra of electron cyclotron emission from an ECR heated plasma in a toroidal magnetic confinement system into which the heating radiation is launched from the low-field side. It is shown that, at frequencies close to the heating frequency, cyclotron emission can become more intense because of the deformation of the distribution function of the resonant electrons. This effect can be used to diagnose the slightly pronounced quasilinear perturbations of the electron distribution in the thermal energy range, which are typical of experiments on ECR plasma heating. Results of a qualitative analysis carried out for model electron distribution functions are presented, and examples of three-dimensional numerical simulations of a circular tokamak are described.  相似文献   

5.
The transverse and longitudinal plasma permittivities, ?tr and ? l , are analyzed for the case where the electron collision frequency in the Bhatnagar-Gross-Krook collision integral is proportional to the absolute value of the electron velocity. It is found that, in both the low-and high-frequency limits, the expressions for ?tr and ? l derived for the case of a variable electron collision frequency coincide with the classical formulas obtained under the assumption of a constant collision frequency, whereas for frequencies close to the electron collision frequency, these expressions differ significantly from the classical ones.  相似文献   

6.
The structure of the RF magnetic field in the vicinity of a loop antenna operating in the whistler frequency range has been studied experimentally and theoretically. The experiments were performed over a wide frequency range at different values of the plasma density, electron temperature, and ambient magnetic field strength. It is shown that, when a loop antenna is smaller than the wavelength of a quasi-longitudinal whistler, the structure of the magnetic field of such an antenna is nearly the same as that of the field of a current-carrying loop in vacuum; otherwise, the RF field is localized near the antenna wire. The results of numerical calculations agree with the measured field distributions. The antenna field is calculated by expanding it in the eigenmodes of a magnetized plasma with allowance for not only propagating but also nonpropagating (exponentially decaying) waves, which make the main contribution to the near field. An analytic estimate of the depth to which the RF magnetic field of a loop antenna penetrates into the plasma is obtained.  相似文献   

7.
The nonlinear resonance doubling of radio wave frequencies in inhomogeneous plasma is studied as applied to the ionosphere under the conditions of the phase synchronism between an extraordinary pump wave and its second harmonic. The synchronism is not related to plasma resonances, but is determined by the magnetic field and plasma electron density in the transparency region. The generation efficiency of the second harmonic of a transversely propagating wave is calculated for a wide frequency band lying higher than the lower hybrid resonance frequency. It is shown that this effect is physically analogous to the generation of the second harmonic of laser radiation in a nonlinear crystal. The generation efficiency of the second harmonic is determined for inhomogeneous ionospheric plasma in which the synchronism condition is satisfied in a limited frequency range. It is shown that this effect can be used for remote nonlinear diagnostics of the upper ionospheric plasma, in which the characteristic size of the synchronism region can reach several kilometers. It is proposed to use a combination of satellite and ground-based ion probes in experiments on transionospheric probing. Even if the frequency of the wave emitted from the satellite is lower than the critical frequency in the ionosphere, the frequency of its second harmonic can exceed the critical frequency, so that it can be recorded by a ground-based ion probe or a specially designed receiver. The reflected second-harmonic signal can also be detected at the satellite by using a broadband radio-frequency spectrometer.  相似文献   

8.
It is shown that a short laser pulse propagating in a plasma with electron density fluctuations can emit electromagnetic waves with frequencies much lower than the laser carrier frequency. Emissions with frequencies close to the plasma frequency and the doubled plasma frequency in a nonisothermal plasma, as well as emission generated in a turbulent plasma, are examined. The effects in question are related to the transformation of the laser pulse wakefield into electromagnetic radiation by electron density fluctuations. The phenomenon under study opens new possibilities for diagnostics of both plasma fields excited by laser pulses and electron density fluctuations in a plasma.  相似文献   

9.
The feasibility of matching electromagnetic radiation in the electron cyclotron frequency range to a dense plasma in an open magnetic trap by producing an inverted (with a minimum on the axis) plasma density profile is discussed. The use of such a profile shows promise for the implementation of efficient cyclotron heating at plasma densities above the critical density, at which the Langmuir frequency is equal to the heating radiation frequency. Examples of the magnetic field and plasma density distributions in a mirror trap are presented for which analysis of the beam trajectories shows the feasibility of efficient electron cyclotron absorption of microwave beams in overcritical plasma.  相似文献   

10.
A study is made of the nonlinear mechanism for the excitation of Langmuir waves in a dense plasma by an intense laser pulse with the frequency ω = ωp/2 (where ωp is the electron plasma frequency).  相似文献   

11.
The nonlinear interaction between upper hybrid waves is simulated numerically for conditions corresponding to the sources of solar microwave bursts (at a frequency of about 5.7 GHz). The source of plasma waves is considered to be an electron beam with a loss-cone-type distribution. It is shown that, for a symmetric double-sided loss cone, the degree of polarization of the radiation generated in a direction transverse to the magnetic field can reach 100% and corresponds to an extraordinary wave. For a one-sided loss cone, in accordance with the previous results, the degree of polarization is found to be low. The efficiency of the plasma mechanism for the radiation generation is estimated.  相似文献   

12.
Results are presented from a theoretical investigation of the acceleration of test electrons by a Langmuir wave excited by a short laser pulse at half the electron plasma frequency. Such a pulse penetrates into the plasma over a distance equal to the skin depth and efficiently excites Langmuir waves in the resonant interaction at the second harmonic of the laser frequency. It is shown that the beam of electrons accelerated by these waves is modulated into a train of electron bunches, but because of the initial thermal spread of the accelerated electrons, the bunches widen and begin to overlap, with the result that, at large distances, the electron beam becomes unmodulated.  相似文献   

13.
A helicon plasma source operating in the ion cyclotron frequency range is studied theoretically. It is shown that, even with a purely inductive antenna exciting a helicon wave in a plasma at ion-acoustic frequencies, the effective resistance characterizing the absorption of high-frequency field energy is determined by the ion-acoustic field generated by the helicon wave. Calculations show that such a plasma source can operate very efficiently.  相似文献   

14.
Results of spectral and magnetic diagnostics of plasma differential rotation in the GOL-3 multiplemirror trap are presented. It is shown that the maximum frequency of plasma rotation about the longitudinal axis reaches 0.5 MHz during the injection of a relativistic electron beam into the plasma. The data of two diagnostics agree if there is a region with a higher rotation frequency near the boundary of the electron beam. Plasma differential rotation can be an additional factor stabilizing interchange modes in the GOL-3 facility.  相似文献   

15.
Expressions for the transverse permittivity of quantum collisional plasma with an arbitrary collision frequency depending on the momentum (wave vector) of plasma particles are derived in the framework of the Mermin approach by using the kinetic Schröbinger-Boltzmann equation with a collision integral in the relaxation approximation in momentum space. It is shown that, when the collision frequency is constant, the derived expressions take the well-known form. The case of degenerate plasma in which the collision frequency is proportional to the absolute value of the wave vector is analyzed. This case corresponds to the assumption of a constant mean free path of plasma particles. The real and imaginary parts of the plasma permittivity are analyzed graphically.  相似文献   

16.
A theory of surface waves in a layer of a spatially inhomogeneous cold electron plasma is presented. Four types of surface waves are revealed, and the conditions under which they can exist are determined. Complex frequency spectra are obtained, and the mechanisms for wave damping by plasma inhomogeneity are discussed.  相似文献   

17.
Nonlinear oscillations of a semiconductor plasma with a low-density electron beam in the absence of an external magnetic field are studied in the hydrodynamic approximation. The beam is assumed to be nonrelativistic and monoenergetic. Cases are studied in which the Langmuir frequency of the electron oscillations in a semiconductor is much higher or much lower than the electron momentum relaxation rate. The self-similar solution obtained for the first case describes the damping of the nonlinear oscillations of the wave potential. Numerical analysis of the second case shows that the electric field distribution in the beam may correspond to that in a shock wave.  相似文献   

18.
The minimal sufficient set of plasma parameters is presented to describe the dispersion properties of electron whistler waves (helicons) in a wide frequency range above the ion cutoff frequency, provided that the wave frequency is significantly lower than the electron plasma frequency. When the gyrofrequency of the lightest ions is much higher than those of heavier ions, it is sufficient to know the relative content of the lightest ions, the highest ion cutoff frequency, the lower hybrid resonance frequency, and the electron gyro- and plasma frequencies. In this case, the frequency of electron whistler waves is determined by the upper root of the biquadratic equation derived, whereas the lower root corresponds to a resonant mode with its refractive index increasing when the frequency tends toward the highest ion gyrofrequency from below. The developed approach is also efficient in plasmas containing a substantial amount of negative ions and/or heavy dust particulates. The accuracy of the approximate solution of the total cold plasma dispersion relation is illustrated graphically.  相似文献   

19.
A study is made of the propagation of steady-state large-amplitude longitudinal plasma waves in a cold collisionless plasma with allowance for both electron and ion motion. Conditions for the existence of periodic potential waves are determined. The electric field, potential, frequency, and wavelength are obtained as functions of the wave phase velocity and ion-to-electron mass ratio. Taking into account the ion motion results in the nonmonotonic dependence of the frequency of the waves with the maximum possible amplitudes on the wave phase velocity. Specifically, at low phase velocities, the frequency is equal to the electron plasma frequency for linear waves. As the phase velocity increases, the frequency first decreases insignificantly, reaches its minimum value, and then increases. As the phase velocity increases further, the frequency continues to increase and, at relativistic phase velocities, again becomes equal to the plasma frequency. Finally, as the phase velocity approaches the speed of light, the frequency increases without bound.  相似文献   

20.
The characteristics of a high-current electron beam-driven microwave amplifier—a dielectric Cherenkov maser—are investigated in the framework of linear theory for the case of a plasma layer present at the surface of the maser slow-wave structure. The dispersion relation for axisymmetric perturbations is obtained for the conventional configuration (a circular dielectric-lined waveguide and a thin annular beam propagating within the vacuum region inside the annular plasma) in the model of a fully magnetized plasma and beam. The results of numerically solving the dispersion relation for different beam and plasma parameters are presented, and an analysis based on these results is given with regard to the features of the beam interaction with the hybrid waves of the system (both hybrid waveguide and hybrid plasma modes). For the hybrid waveguide mode, the dependences of the spatial growth rate on the frequency demonstrate an improvement in the gain at moderate plasma densities, along with narrowing the amplification band and shifting it toward higher frequencies. For the hybrid plasma mode, the interaction with a mildly relativistic (200–250 keV) beam, when the wave phase velocity is close to the speed of light in the dielectric medium, is most interesting and, therefore, has been studied in detail. It is shown that, depending on the beam and plasma parameters, different regimes of the hybrid plasma mode coupling to the hybrid waveguide mode or a usual, higher order plasma mode take place; in particular, a flat gain vs. frequency dependence is possible over a very broad band. The parameters at which the ?3-dB bandwidth calculated for the 30-dB peak gain exceeds an octave are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号