首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study is made of the excitation of wake waves by a one-dimensional bunch of charged particles in an electron plasma in the presence of an intense monochromatic pump wave with circular polarization. In the main state (in the absence of a bunch), the interaction between a pump wave and a plasma is described by the Maxwell equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of linear waves by a one-dimensional bunch is investigated against a cold plasma background. It is shown that, in a certain range of the parameter values of the bunch, pump wave, and plasma, the amplitude of the excited transverse waves grows as the energy of the bunch particles increases until the relativistic factor of the bunch reaches a certain threshold value above which the transverse wave amplitude becomes essentially independent of the bunch particle energy and grows as the intensity and frequency of the pump wave increase. The amplitude and wavelength of the longitudinal field, which is shown to depend weakly on the energy of the bunch particles, grows with increasing the pump wave intensity.  相似文献   

2.

Surface plasmon polariton (SPP) waves are the most extensively studied waves among various types of surface waves because they are easy to excite and have been used in many optical applications particularly for plasmonic communication, sensing, and harvesting solar energy. In all these applications, especially on-chip plasmonic communication, scattering can be an important issue to deal with. Therefore, this paper aimed to theoretically inspect the scattering pattern of SPP waves from a perfect electric conductor (PEC) cylindrical scatterer. The cylindrical wave approach is used to solve the scattering problem by a cylindrical object placed below a metallic layer. The scattering is investigated thoroughly by changing the size of the scatterer and its distance from the interface along which the SPP wave is excited. As the size of the scatterer increases, the scattering increases significantly. On the other hand, when the distance of the scatterer from the interface is increased, the scattered field becomes small. Two-dimensional field maps are produced for the incident angle at which SPP is excited. Numerical results are also presented for other incident angles to make a comparison. Furthermore, the forward and backward far-fields are significantly enhanced if the SPP wave is scattered in comparison with when the SPP wave is not present.

  相似文献   

3.
It is found experimentally that the spectrum of waves forming a low-pressure RF discharge in a strong magnetic field broadens toward lower frequencies. Such an asymmetric broadening is explained by the scattering of the pump wave by the electron flows escaping from the discharge. A similar effect can take place during the formation of the spectrum of artificial RF radiation in the Earth??s ionosphere.  相似文献   

4.
The effect of long-wavelength magnetic field disturbances typical of the Earth’s auroral region on the generation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron flow propagates against the background of cold low-density plasma is analyzed. The dynamics of the propagation and amplification of fluctuation waves with initial group velocities directed toward the higher magnetic field is considered in the geometrical optics approximation. Analysis of wave trajectories shows that the wave amplification coefficients depend on the magnetic field gradient in the reflection region. If the wave reflection point lies in the region where the gradient of the disturbed magnetic field is less than that of the undisturbed dipole field, then the wave amplification coefficients exceed those of waves propagating in the undisturbed field, and vice versa. Thus, the shape of the spectrum of generated waves changes in the presence of long-wavelength disturbances of the dipole magnetic field in such a way that segments with different curvatures can form in the spectrum.  相似文献   

5.
A study is made of radio-wave scattering by Langmuir turbulent pulsations in a plasma in a magnetic field. The effect of this process on the polarization of radio waves at frequencies far above or close to the electron plasma frequency is investigated. The wave scattering by Langmuir turbulence is shown to strongly affect the polarization characteristics. When the optical thickness typical of the scattering process is on the order of unity, the degree of wave polarization can change by 30% both at high frequencies and at frequencies close to the plasma frequency, in which case the circular polarization can reverse direction. It is shown that, as a result of wave scattering by Langmuir turbulence, the degree of circular polarization of radio waves depends on the wavelength even in a uniform magnetic field.  相似文献   

6.
A study is made of the formation of the spectra of Langmuir waves excited as a result of the development of beam-plasma instability in a collisionless magnetized plasma with low-frequency turbulence. Equations are derived that describe the dynamics of the formation of spectra in the quasilinear statistical approximation.The equations obtained account for small-and large-angle scattering of the electron-beam-excited waves by given background plasma density fluctuations. The scattering of Langmuir waves leads to the redistribution of their energy in phase space and, under appropriate conditions, to the appearance of a characteristic dent in the wave spectra in the frequency range where the spectral intensity is maximum. Numerical simulations carried out for plasma parameters typical of the polar cap of the Earth’s magnetosphere help to explain the shape of the spectra of Langmuir waves that were recorded by the Interball-2 satellite when it was flying through this magnetospheric region.  相似文献   

7.
The properties of solitary Alfvén waves are studied for different ratios between the thermal plasma pressure and the magnetic pressure. It is shown that the wave propagation is accompanied by the generation of a nonlinear ion current along the magnetic field, the contribution of which to the Sagdeev potential was previously ignored. An expression for the quasi-potential of Alfvén waves with allowance for this effect is derived. It is found that Alfvén waves are compression waves in the inertial limit, whereas kinetic Alfvén waves are rarefaction waves. In a high-pressure plasma, a solitary wave has the form of either a well or a hump in the plasma density, depending on the relations between the Mach number, angle between the wave propagation direction and the magnetic field, and the value of the plasma beta.  相似文献   

8.
The propagation of fire-diffuse-fire Ca2+ waves through a three-dimensional rectangular domain is considered. The domain is infinite in extent in the direction of propagation but with lateral barriers to diffusion which contain Ca2+ pumps. The Ca2+ concentration profile due to the firing of a release site (spark) is derived analytically based on the Green’s function for the diffusion equation on the domain. The existence, stability and speed of these waves is shown to be critically dependent on the dimensions of the domain and the Ca2+ pump rate. It is shown that the smaller the dimensions of the region, the lower the Ca2+ release flux required for wave propagation, and the higher the wave speed. Also it is shown that the region may support multiple Ca2+ wavefronts of varying wave speed. This model is relevant to subsarcolemmal waves in atrial myocytes (Kockskämper et al., 2001, Biophys. J. 81, 2590–2605), and the results may be of importance in understanding the roles of the endoplasmic/sarcoplasmic reticulum, surface membranes and Ca2+ pumps in the intracellular Ca2+ dynamics of cells.  相似文献   

9.
We show that the commonly used Rayleigh-Debye method for calculating light scattering can lead to significant errors when used for describing scattering from dilute solutions of long rigid polymers, errors that can be overcome by use of the easily applied Shifrin approximation. In order to show the extent of the discrepancies between the two methods, we have performed calculations at normal incidence both for polarized and unpolarized incident light with the scattering intensity determined as a function of polarization angle and of scattering angle, assuming that the incident light is in a spectral region where the absorption of hemoglobin is small. When the Shifrin method is used, the calculated intensities using either polarized or unpolarized scattered light give information about the alignment of polymers, a feature that is lost in the Rayleigh-Debye approximation because the effect of the asymmetric shape of the scatterer on the incoming polarized electric field is ignored. Using sickle hemoglobin polymers as an example, we have calculated the intensity of light scattering using both approaches and found that, for totally aligned polymers within parallel planes, the difference can be as large as 25%, when the incident electric field is perpendicular to the polymers, for near forward or near backward scattering (0 degrees or 180 degrees scattering angle), but becomes zero as the scattering angle approaches 90 degrees. For randomly oriented polymers within a plane, or for incident unpolarized light for either totally oriented or randomly oriented polymers, the difference between the two results for near forward or near backward scattering is approximately 15%.  相似文献   

10.
The features of the large-angle stimulated Raman scattering of short laser pulses in a homogeneous underdense plasma are studied analytically. It is found that, for scattering angles that are not too close to zero, a steady-state regime of the convective amplification of unstable waves is established in the frame of reference comoving with the laser pulse. The problem of convective amplification in a two-dimensional region is solved in both weak-and strong-coupling regimes. It is shown that the steady-state envelopes of the scattered radiation and scattering plasma waves are two-dimensional in nature. It is found that, for a given scattering angle, the maximum possible spatial amplification at the trailing edge of the pulse is achieved if the ratio of the transverse to longitudinal size of the pulse is larger than the cotangent of one-half of the scattering angle.  相似文献   

11.
The propagation of large-amplitude solitary ion-acoustic waves in magnetized plasma is analyzed. The problem is solved without assuming plasma quasineutrality within the pulse, and the wave potential is described by Poisson’s equation. Solutions in the form of supersonic and near-sonic solitary waves propagating obliquely to the magnetic field are found. The pulses have several peaks and exist for a discrete set of the wave parameters. The amplitude and oscillation frequency of a solitary wave are determined as functions of the Mach number and the propagation angle with respect to the magnetic field.  相似文献   

12.
Specific features of Bragg backscattering under conditions of strong polarization degeneracy near the cutoff surface in an anisotropic medium are studied analytically and numerically. It is shown that the linear interaction of normal waves can substantially affect wave scattering by suppressing the amplification of Bragg backscattering near the cutoff region in the case of weak coupling between normal waves.  相似文献   

13.
Understanding protein folding requires the determination of the configurational space accessible to the protein at different stages in folding. Here, computer simulation analysis of small angle neutron scattering results is used to probe the change in the distribution of configurations on strong denaturation of a globular protein, phosphoglycerate kinase, in 4 M guanidine hydrochloride solution. To do this atomic-detail ensembles of the unfolded protein chain are modeled and their scattering profiles compared with the experiment. The local conformational statistics are found to strongly influence the experimental intensity at scattering vectors between 0.05 and 0.3 A(-1). Denaturation leads to a reduction in the protein atom-pair distance distribution function over the approximately 3-15 A region that is associated with a quantifiable shift in the backbone torsional angle (phi, psi) distribution toward the beta region of the Ramachandran plot.  相似文献   

14.
The electromagnetic wave scattering due to excitation of surface plasmons from a metallic rod with dielectric layer embedded in the long plasma column is investigated. In the first part, for short-wavelength waves by investigating the variations of surface polarized charge density on the boundaries, the resonance frequencies and the effective factors on it such as the geometrical dimensions, the radius of the metal, the dielectric thickness, and the plasma radius will be analyzed. In the second part, for presenting an exact analysis and categorizing types of resonant frequency to the dominant resonant frequency and subsidiary resonant frequency of the plasmons, the scattering of long-wavelength waves from the mentioned object will be reviewed. In both cases, the backscattering cross section which is a scale of the scattered power in the direction of incident will be presented.  相似文献   

15.
A study is made of the excitation of wake waves by a one-dimensional electron bunch in an electron plasma in the presence of an intense monochromatic pump wave with circular polarization. In the main state (in the absence of a bunch), the interaction between a pump wave and a plasma is described by Maxwell's equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of linear waves by a one-dimensional bunch is investigated against a cold plasma background. It is shown that, in a certain range of parameter values of the bunch, pump wave, and plasma, the excitation is resonant in character and the amplitude of the excited wake waves increases with distance from the bunch.  相似文献   

16.
F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave.  相似文献   

17.
The amplitudes of high-frequency longitudinal fluctuations excited by a nonequilibrium source in a nonuniform plasma are calculated. The results obtained are applicable to arbitrary nonequilibrium distributions of plasma particles in the absence of parametric instabilities. The spectra of probing waves scattered by fluctuations in a linear ionospheric plasma layer under conditions typical of experiments on incoherent radio wave scattering are found. The effects of electron-ion collisions and electron temperature anisotropy on the scattering intensity are demonstrated.  相似文献   

18.
The enhancement factor for surface plasmon–polaritons scattering by a thin dielectric grating was measured experimentally. Scattering of a p-polarized wave may be up to 30,000 times stronger than the non-resonant scattering of an s-polarized wave by the same grating. A detailed comparison between the theoretical calculations and experimental measurements was performed. Strong localization of the scattered field near the edges of diffraction grating grooves was found. Such localization is very promising for numerous applications, e.g., biological sensors, optical tweezers for catching particles, or viruses, etc.  相似文献   

19.
Cysyk J  Tung L 《Biophysical journal》2008,94(4):1533-1541
Reentrant spiral waves can become pinned to small anatomical obstacles in the heart and lead to monomorphic ventricular tachycardia that can degenerate into polymorphic tachycardia and ventricular fibrillation. Electric field-induced secondary source stimulation can excite directly at the obstacle, and may provide a means to terminate the pinned wave or inhibit the transition to more complex arrhythmia. We used confluent monolayers of neonatal rat ventricular myocytes to investigate the use of low intensity electric field stimulation to perturb the spiral wave. A hole 2-4 mm in diameter was created in the center to pin the spiral wave. Monolayers were stained with voltage-sensitive dye di-4-ANEPPS and mapped at 253 sites. Spiral waves were initiated that attached to the hole (n = 10 monolayers). Electric field pulses 1-s in duration were delivered with increasing strength (0.5-5 V/cm) until the wave terminated after detaching from the hole. At subdetachment intensities, cycle length increased with field strength, was sustained for the duration of the pulse, and returned to its original value after termination of the pulse. Mechanistically, conduction velocity near the wave tip decreased with field strength in the region of depolarization at the obstacle. In summary, electric fields cause strength-dependent slowing or detachment of pinned spiral waves. Our results suggest a means to decelerate tachycardia that may help to prevent wave degeneration.  相似文献   

20.
B A Fedorov  P U Shmidt 《Biofizika》1991,36(5):749-753
The "cube method" [M. Yu. Pavlov, B. A. Fedorov, Biopolymers, 22, 1507, 1983] has been used to calculate the intensity of the large-angle X-ray scattering from the volumes of several globular proteins. In the logarithmic plots of the scattered intensity curves from three of these proteins, there is a linear region at scattering angles corresponding to Bragg distances of from about 6.3 A to 21 A. This linear region possibly may be due to the fractal properties of the surfaces of these proteins on length scoles from 6.3 A to 21 A, and the fractal dimensions corresponding to the power-law scattering at these scattering angles have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号