首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results from experimental studies of an electric discharge operating between a solid anode and an electrolytic cathode in a wide pressure range are presented. Specific features of the discharge ignition and discharge shape and peculiarities the structure of cathode spots on the electrolyte surface and anode spots on the surface of the solid electrode are revealed. The dependences of the current density on the electrolytic cathode and metal anode on the total current are measured, and the spatial distribution of the electric field is determined. A transition of a glow discharge into a multichannel discharge is investigated. The experimental data on the frequency and amplitude of the current and voltage pulsations are presented. Requirements for the maintenance of an electric discharge with an electrolytic cathode are formulated using the obtained experimental results.  相似文献   

2.
For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.  相似文献   

3.
Enzymatic biofuel cell based on enzyme modified anode and cathode electrodes are both powered by ethanol and operate at ambient temperature is described. The anode of the presented biofuel cell was based on immobilized quino-hemoprotein-alcohol dehydrogenase (QH-ADH), while the cathode on co-immobilized alcohol oxidase (AOx) and microperoxidase (MP-8). Two enzymes AOx and MP-8 acted in the consecutive mode and were applied in the design of the biofuel cell cathode. The ability of QH-ADH to transfer electrons directly towards the carbon-based electrode and the ability of MP-8 to accept electrons directly from the same type of electrodes was exploited in this biofuel cell design. Direct electron transfer (DET) to/from enzymes was the basis for generating an electric potential between the anode and cathode. Application of immobilized enzymes and the harvesting of the same type of fuel at both electrodes (cathode and anode) avoided the compartmentization of enzymatic biofuel cell. The maximal open circuit potential of the biofuel cell was 240mV.  相似文献   

4.
A silver anode, but not a cathode, is bactericidal at microampere current levels because of the electrochemical reactions occurring at the metal electrode surface. This has been clinically useful as a local anti-infective agent even though the mechanism of action on the bacterial cell has not been determined. We investigated the effect by inducing β-galactosidase while passing current though cultures of Escherichia coli. Enzyme induction was depressed in the silver anode chamber within twenty minutes of initiation of current (0.04 to 40 μA); induction in the connected silver cathode chamber was normal. The inhibition at the anode is not the result of electrolysis of the medium nor is the electric current itself required, since pre-anodized silver is inhibitory. The electrochemical products are effective even after derepression has occurred. They appear to act on the process of protein production itself rather than directly on the liberated β-galactoside enzyme.  相似文献   

5.
One of the key problems of the Baikal project, intended to create a superpower pulsed generator for ICF experiments, is that of matching a multimodule plasma opening switch (POS) to a liner load. An intermediate inductance or a separating discharger is proposed to be used as a matching element between the POS and the load. An analysis is made of the effect of both versions of the matching system on the synchronization of the POS modules and the energy transfer from the inductive storage to the load. Methods for optimizing the matching element are examined. It is shown that the POS modules can be synchronized and the inductive storage energy can be efficiently transferred to a low-impedance load. A multigap vacuum discharger with a point anode and plane cathode is to be used as a separating discharger. Such an electrode system make it possible to concentrate the electric field at the point anode and to substantially enhance the electric strength of the inter-electrode gap. Results are presented from experimental studies of vacuum breakdown in such an electrode system with a gap length of about 1 mm.  相似文献   

6.
An elementary theory of the cathode region at the high-voltage stage of an arc discharge is proposed. The theory is based on the balance equations for the particles in an active plasma layer, the power balance at the cathode, and the equation for the Richardson-Dushman electron emission with allowance for the Schottky effect. The most characteristic features of this type of discharge are considered. A non-Langmuir cathode sheath model is proposed for a low-voltage arc on a tungsten electrode.  相似文献   

7.
Processes occurring in the low-temperature plasma of extended quasi-stationary arc discharges in air between graphite electrodes are investigated. Along with the conventional (constricted) discharge geometry, other discharge modes—diffuse (distributed) and diffuse-constricted—are studied. Contraction, stratification, and shunting processes are considered. Current oscillation modes are revealed that are caused by the interaction between the cathode and anode jets and the origination of plasma jets and solid particles from the locally overheated anode surface. 1 The use of graphite electrodes with standard atmospheric pressure excludes the presence of the liquid phase in the electrode spots  相似文献   

8.
A study is made of the motion of a plasma with a frozen-in magnetic field along the electrode surfaces in the direction transverse to the magnetic field. A one-dimensional problem of an electrode sheath is formulated in which all of the quantities depend only on the coordinate orthogonal to the electrode surface. Viscous plasma heating, plasma cooling via heat conduction, and other kinetic effects are taken into consideration. Account is also taken of the effect of plasma acceleration and of the related current that is transverse to the electrode surfaces and, due to the Hall effect, carries the magnetic flux away from the cathode and toward the anode. Solving the one-dimensional problem with a constant electric current and constant magnetic field shows that, in a sheath that forms near the cathode, the solution becomes self-similar, the plasma mass grows linearly, and the electron magnetization parameter remains unchanged. It is found that the anode sheath cannot be described in the magnetohydrodynamic approximation, according to which the plasma density in the sheath rapidly vanishes, while the current through the sheath remains constant. This difficulty can be overcome by incorporating some of the nonhydrodynamic effects (primarily, electron dispersion), thereby making the problem physically correct. Solving the problem numerically shows that a decrease in the plasma density in the anode sheath due to the Hall effect gives rise to additional significant plasma acceleration.  相似文献   

9.
The squid giant axon was placed in a shallow narrow trough and current was sent in at two electrodes in opposite sides of the trough and out at a third electrode several centimeters away. The potential difference across the membrane was measured between an inside fine capillary electrode with its tip in the axoplasm between the pair of polarizing electrodes, and an outside capillary electrode with its tip flush with the surface of one polarizing electrode. The initial transient was roughly exponential at the anode make and damped oscillatory at the sub-threshold cathode make with the action potential arising from the first maximum when threshold was reached. The constant change of membrane potential, after the initial transient, was measured as a function of the total polarizing current and from these data the membrane potential is obtained as a function of the membrane current density. The absolute value of the resting membrane resistance approached at low polarizing currents is about 23 ohm cm.2. This low value is considered to be a result of the puncture of the axon. The membrane was found to be an excellent rectifier with a ratio of about one hundred between the high resistance at the anode and the low resistance at the cathode for the current range investigated. On the assumption that the membrane conductance is a measure of its ion permeability, these experiments show an increase of ion permeability under a cathode and a decrease under an anode.  相似文献   

10.
Results are presented from experimental studies of a high-current electric discharge operating between an St45 steel cathode and a service water anode in a wide range of air pressures. Peculiarities of discharge ignition and specific features of cathode and anode spots were revealed. The behavior of the current density on a service water anode was investigated for the first time. Comparison of the current densities j on the steel cathode and service water anode shows that, in the parameter range under study, Hehl’s law is not satisfied on the water anode. The two-dimensional distribution of the potential inside and on the surface of the service water anode was measured.  相似文献   

11.
We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs), by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB) was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB). The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2) than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.  相似文献   

12.
利用电化学活跃微生物协助电解发酵产氢   总被引:2,自引:0,他引:2  
摘要:电解协助发酵产氢是在外源电解协助下,利用电化学活跃微生物在石墨阳极上生长达到彻底氧化因发酵产氢残存的有机酸,产生CO2、电子与质子,电子进入石墨阳极经导线传到铂阴极,而质子则穿过阳离子膜进入阴极池,在无氧环境下,通过外加电压和铂的催化下,电子与质子结合为氢。此过程电子回收率可达90%以上,产氢效率可达8-9mol H2/mol Glucose。这一战略从根本上克服发酵产氢的发酵障碍和代谢产物的反馈抑制,极大地提高了氢转化率,极有可能率先应用于能源作物原料的氢能转化、以及有机污水和有机废弃物处理。  相似文献   

13.
Advancements in portable electronic devices and electric powered transportation has drawn more attention to high energy density batteries, especially lithium–sulfur batteries due to the low cost of sulfur and its high energy density. However, the lithium–sulfur battery is still quite far from commercialization mostly because of incompatibility between all major components of the battery—the cathode, anode, and electrolyte. Here a methodology is demonstrated that shows promise in significantly improving battery stability by multilayer encapsulation of sulfur particles, while using conventional electrolytes, which allows a long cycle life and an improved Coulombic efficiency battery at low electrolyte feeding. The multilayer encapsulated sulfur battery demonstrates a Coulombic efficiency as high as 98%, when a binder‐free electrode is used. It is also shown that the all‐out self‐discharge of the cell after 168 h can be reduced from 34% in the regular sulfur battery to less than 9% in the battery with the multilayer encapsulated sulfur electrode.  相似文献   

14.
The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5–20 mA/cm2 using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density‐potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition‐dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high‐grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high‐grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10–40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co‐precipitated by adsorption onto the insoluble MnO2. High‐grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material. With both electrode combinations and current densities of 5 or 10 mA/cm2, in the cathode region low depositions of 10–20 % Cd, 2–10% Mn, 5–20 % Zn, 1–20 % Co and 5–15 % Ni were measured. By contrast, the elimination of other metals was substantially larger: Fe 40 –60 %, Cu 20–40 %, and Cr 40–60 %. In the anode region the removal of heavy metals was in the order of 30–50%, with Mn being as high as 80 %. The anode materials exhibit good resistance at the current densities tested. The precipitates deposited in both electrode regions contained as main components Al with 10–20 %, Mg with approximately 10 %, and SO4 with 5–20 %. The solid material in the cathode chamber consisted of relatively high proportions of Zn and Mn. Calcium in the solids indicated the co‐precipitation of calcium sulfate. The main components in the solids of the anode chamber were Mn in the form of pyrolusite, Al as basic sulfate, and Mg. The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a practical alternative to the metal separation by alkalization. Regarding the main heavy metals Zn, Mn and Ni in the process water, combination electrodes using steel as a cathode material and coal or platinized titanium as an anode material proved to be suitable for eliminating the heavy metals from the aqueous phase. However, for practical application, further work is necessary to improve the efficiency, applicability and costs of the process.  相似文献   

15.
Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved by reducing electrode spacing but high surface area anodes are needed. The brush anode MEC with electrode spacing of 2 cm had a higher hydrogen production rate and energy efficiency than an MEC with a flat cathode and a 1-cm electrode spacing. The maximum hydrogen production rate with a 2 cm electrode spacing was 17.8 m(3)/m(3)d at an applied voltage of E(ap)=1 V. Reducing electrode spacing increased hydrogen production rates at the lower applied voltages, but not at the higher (>0.6 V) applied voltages. These results demonstrate that reducing electrode spacing can increase hydrogen production rate, but that the closest electrode spacing do not necessarily produce the highest possible hydrogen production rates.  相似文献   

16.
The retrograde motion of an arc in a transverse magnetic field is attributed to the onset of a tangential flow of gas or vapor. The physics of a polarized plasma jet conducting the current between the cathode and anode is discussed.  相似文献   

17.
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m2 (20 W/m3). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.  相似文献   

18.
Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.  相似文献   

19.
Lithium ion capacitors (LICs), which are hybrid electrochemical energy storage devices combining the intercalation/deintercalation mechanism of a lithium‐ion battery (LIB) electrode with the adsorption/desorption mechanism of an electric double‐layer capacitor (EDLC) electrode, have been extensively investigated during the past few years by virtue of their high energy density, rapid power output, and excellent cycleability. In this review, the LICs are defined as the devices with an electrochemical intercalation electrode and a capacitive electrode in organic electrolytes. Both electrodes can serve as anode or cathode. Throughout the history of LICs, tremendous efforts have been devoted to design suitable electrode materials or develop novel type LIC systems. However, one of the key challenges encountered by LICs is how to balance the sluggish kinetics of intercalation electrodes with high specific capacity against the high power characteristics of capacitive electrode with low specific capacitance. Herein, the developments and the latest advances of LIC in material design strategies and key techniques according to the basic scientific problems are summarized. Perspectives for further development of LICs toward practical applications are also proposed.  相似文献   

20.
Results are presented from experimental studies of the prebreakdown phase of an electric discharge between point (anode) and plane (cathode) electrodes immersed in water with different initial conductivity. When a high-voltage pulse is applied, the induced conductivity is detected in the discharge gap. Its value is one order of magnitude higher than the initial conductivity. It is shown that the induced conductivity increases almost linearly with the initial conductivity. The induced conductivity correlates with the UV emission from the cathode surface. A qualitative analysis of the experimental results is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号