首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical properties of the membranes of Valoniautricularis were investigated using intracellular electrodes. Using short (0.5–1.0 ms) current pulses it was found that at a critical membrane potential difference of 0.85 V there was a large and discontinuous decrease in the membrane impedance and the slope resistance beyond this potential was virtually zero.The electrical breakdown of the membranes did not lead to global damage of the cells and after a resealing time of approx. 5 s could be repeated with identical results.Experiments with long current pulses and long bursts of pulses repeated at 1 kHz are described which show that the electrical breakdown is not due to thermal damage arising from localized heating in the membrane. Thus a dissipation of some 103–105 times the energy normally dissipated during the onset of breakdown did not lead to breakdown itself unless the critical membrane potential was exceeded.The results also show that punch-through and avalanche ionization are not likely to be important in the breakdown mechanism. The results are consitent, however, with there being a critical instability in the electro-mechanical stresses set up in the membrane at large electric field strengths.  相似文献   

2.
Electric explosion of fine tungsten wires in vacuum   总被引:1,自引:0,他引:1  
A study is made of the breakdown of a fine wire during its electric explosion in vacuum. The problem of how the wire diameter, the rate of energy deposition in the wire, and the insulation of the electrode surface near the electrode-wire contact influence the wire explosion and the accompanying breakdown is investigated experimentally. The wire explosion was performed at a positive polarity of the high-voltage electrode. A current density growth rate of 6×1011–5×1016 A/(s cm2) is achieved. It is shown that the breakdown along a wire is similar in many respects to the gas breakdown. The insulation of the wire surface makes it possible to avoid breakdown and to increase the deposited energy to values sufficient for the wire sublimation.  相似文献   

3.
Results are presented from experimental studies of ac corona discharges between a point electrode and a dielectric-coated plate in nitrogen, argon, helium, and air in the voltage frequency range f=50 Hz–50 kHz. The characteristic features of this type of discharge are compared with the well-known features of dc positive and negative coronas and a barrier discharge between plane electrodes. It is shown that the presence of a dielectric barrier on the plane electrode significantly changes the electric characteristics and spatial structure of the corona, whereas the main phases of the discharge evolution remain unchanged as the voltage increases. With a point electrode, the breakdown voltage of the barrier corona decreases substantially as compared to the breakdown voltage of a barrier discharge with plane electrodes. This leads to softer conditions for the streamer formation in a barrier corona, which becomes more stable against spark generation.  相似文献   

4.
Dielectric Breakdown of Cell Membranes   总被引:23,自引:4,他引:19       下载免费PDF全文
With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 · 106 V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector voltage (or the electric field strength in the orifice) depends on the membrane composition (or the intrinsic membrane potential) as revealed by measuring the critical voltage in E. coli B harvested from the logarithmic and stationary growth phases. The critical detector voltage increased by about 30% for a given volume on reaching the stationary growth phase.  相似文献   

5.
The electric and spectral characteristics of a nonsteady discharge in an atmospheric air flow blown through a point-plane interelectrode gap were investigated experimentally. The discharge was produced by applying a constant positive voltage to the point electrode, the amplitude of the applied voltage being much higher than the corona ignition voltage. The nonsteady character of the discharge is due to the spontaneously repeating streamer-spark breakdown, followed by the formation of either a diffuse ultracorona or a filamentary glow discharge. In the latter case, the length of the plasma column increases progressively, being blown off by the gas flow from the discharge gap. The extinction of a filamentary discharge is unrelated to the break of the current channel: the discharge decays abruptly when the filament length reaches its critical value. The distribution of active particles (O, OH, and N*2) carried out from the discharge gap is determined from the data of spectral measurements.  相似文献   

6.
P M Ghosh  C R Keese    I Giaever 《Biophysical journal》1993,64(5):1602-1609
When an electrical potential of order one volt is induced across a cell membrane for a fraction of a second, temporary breakdown of ordinary membrane functions may occur. One result of such a breakdown is that molecules normally excluded by the membrane can now enter the cells. This phenomenon, generally referred to as electropermeabilization, is known as electroporation when actual pores form in the membrane. This paper presents a unique approach to the measurement of pore formation and closure in anchored mammalian cells. The cells are cultured on small gold electrodes, and by constantly monitoring the impedance of the electrode with a low-amplitude AC signal, small changes in cell morphology, cell motion, and membrane resistance can be detected. Because the active electrode is small, the application of a few volts across the cell-covered electrode causes pore formation in the cell membrane. In addition, the heat transfer is very efficient, and the cells can be porated in their regular growth medium. By this method, the formation and resealing of pores due to applied electric fields can be followed in real time for anchorage-dependent cells.  相似文献   

7.
Results of experiments on the generation of shock waves during electric explosions of fine copper and tungsten wires in air are analyzed. The generation mechanism of stationary shock wave by a plasma piston formed during the shunting breakdown of the electrode gap in the course of a wire explosion is investigated. The role of structural elements of such discharges, such as the core, corona, and wire environment, is analyzed.  相似文献   

8.
Desorption of three oral bacterial strains from a salivary conditioning film on an indium tin oxide electrode during application of a positive (bacterial adhesion to the anode) or a negative electric current was studied in a parallel plate flow chamber. Bacterial adhesion was from a flowing suspension of high ionic strength, after which the bacterial suspension was replaced by a low ionic strength solution without bacteria and currents ranging from -800 to +800 microA were applied. Streptococcus oralis J22 desorbed during application of a positive and negative electric current with a desorption probability that increased with increasing electric current. Two actinomyces strains, however, could not be stimulated to desorb by the electric currents applied. The desorption forces acting on adhering bacteria are electroosmotic in origin and working parallel to the electrode surface in case of a positive current, whereas they are electrophoretic and electrostatic in origin and working perpendicular to the surface in case of a negative current. By comparison of the effect of positive and negative electric currents, it can be concluded that parallel forces are more effective in stimulating bacterial desorption than perpendicular forces. The results of this study point to a new pathway of cleaning industrial and biomedical surfaces without the use of detergents or biocides.  相似文献   

9.
A discharge operating in a 80-cm-long discharge tube with an inner diameter of 15 mm, filled with a 3 : 1 neon–argon mixture at a pressure of 1 Torr, was investigated experimentally. Square voltage pulses with a period of 1 s were supplied to one of the tube electrodes, the second electrode being ungrounded. The initial stage of breakdown—the primary breakdown between the high-voltage (active) electrode and the tube wall, accompanied by the propagation of the prebreakdown ionization wave—was the same as in the conventional scheme with a grounded low-voltage electrode. Since the discharge gap was not closed, the discharge was not ignited. An essentially new effect was observed after the end of the voltage pulse. After a certain time interval, voltage spikes of opposite polarity, the amplitude and shape of which were close to those observed during the primary breakdown, appeared in the voltage and current waveforms of the active electrode. Simultaneously, a radiation pulse from the region adjacent to the active electrode was observed and an ionization wave began to propagate toward the second electrode. This work is dedicated to investigating this effect (which was named “reverse breakdown”) and analyzing its mechanism. A conclusion is made on the similarity of this phenomenon to the processes occurring in atmospheric-pressure dielectric barrier discharges.  相似文献   

10.
Results are presented from experimental studies of the breakdown stage of a low-pressure discharge (1 and 5 Torr) in a glass tube the length of which (75 cm) is much larger than its diameter (2.8 cm). Breakdowns occurred under the action of positive voltage pulses with an amplitude of up to 9.4 kV and a characteristic rise time of 2–50 μs. The discharge current in the steady-state mode was 10–120 mA. The electrode voltage, discharge current, and radiation from the discharge gap were detected simultaneously. The dynamic breakdown voltage was measured, the prebreakdown ionization wave was recorded, and its velocity was determined. The dependence of the discharge parameters on the time interval between voltage pulses (the socalled “memory effect”) was analyzed. The memory effect manifests itself in a decrease or an increase in the breakdown voltage and a substantial decrease in its statistical scatter. The time interval between pulses in this case can reach 0.5 s. The effect of illumination of the discharge tube with a light source on the breakdown was studied. It is found that the irradiation of the anode region of the tube by radiation with wavelengths of ≤500 nm substantially reduces the dynamic breakdown voltage. Qualitative explanations of the obtained results are offered.  相似文献   

11.
Electric field induced permeabilization of cell membranes is an important technique for gene transfection and cell hybridization. Mechanistic studies of this process revealed that the uptake of fluorescent indicator by plant protoplasts occurs predominantly on the hemisphere facing the positive electrode, while in erythrocyte ghosts the probes exit through the hemisphere facing the negative electrode. To reconcile these observations symmetrical pore formation and a mechanism of molecular exchange by electroosmosis has been proposed. In light of these controversial observations, we conducted a systematic study of electroporation of NIH3T3 cells with varying electric field strength, waveform and frequency. Our data revealed that (i) symmetrical permeabilization of the cell membrane occurs only with bipolar a.c. fields. (ii) When a critical membrane breakdown potential, Vc, is applied using either an unipolar a.c. fields or a single d.c. square pulse, the cell membrane becomes permeabilized only at the hemisphere facing the positive electrode. (iii) When the pulse-induced membrane potential, Vm, is approximately equal to or larger than the intrinsic membrane potential (i.e. using d.c. or unipolar a.c. field), asymmetric permeabilization was observed with the hemisphere facing the positive electrode being most permeable. (iv) The rate of fluorescent indicator uptake is dependent on the concentration of the indicator. These results indicate that electro-permeabilization of cell membranes is affected by its resting potential and that electroosmosis is not the dominant mechanism for the cellular uptake of foreign molecules in electroporation.  相似文献   

12.
Experimental data on the generation of picosecond runaway electron beams in an air gap with an inhomogeneous electric field at a cathode voltage of up to 500 kV are presented. The methods and equipment developed for these experiments made it possible to measure the beam characteristics with a time resolution of better than 10−11 s, determine the voltage range and the beam formation time in the breakdown delay stage, and demonstrate the influence of the state of the cathode surface on the stability of runaway electron generation. It is demonstrated that the critical electron runaway field in air agrees with the classical concepts and that the accelerated beam can be compressed to ∼20 ps. It is unlikely that, under these conditions, the beam duration is limited due to the transition of field emission from the cathode to a microexplosion of inhomogeneities. The maximum energy acquired by runaway electrons in the course of acceleration does not exceed the value corresponding to the electrode voltage.  相似文献   

13.
Results are presented from experimental studies of the prebreakdown stage of a discharge in nitrogen at pressures of a few tens of atmospheres, gap voltages higher than 140 kV, and a voltage rise time of about 1 ns. Breakdown occurs at the front of the voltage pulse; i.e., the time of breakdown formation is shorter than the front duration. It is shown that, in gaps with a nonuniform electric field, the breakdown formation time is mainly determined by the time of avalanche development to the critical number of charge carriers. The subsequent stages of breakdown (the development of the ionization wave and the buildup of the conductivity in the weakly conducting channel bridging the gap) turn out to be shorter than this time or comparable to it.  相似文献   

14.
Summary The dielectric breakdown in the membranes of cells ofValonia utricularis was investigated using intracellular electrodes and 500-sec current pulses. Electrical breakdown, which occurs when the membrane potential reaches a well-defined critical value, is not associated with global damage to the cell or its membranes (the membrane reseals in <5 sec). It was thus possible to investigate the effect of temperature on dielectric breakdown in single cells. It was found that the critical potential for breakdown was strongly dependent on temperature, decreasing from 1000 mV at 4°C to 640 mV at 30°C. The decrease in the breakdown potential with increasing temperature and the very short rise-time of the breakdown current (1 sec) suggests that the Wien field dissociation does not play a major role in the breakdown process. It is shown that the nonlinearI–V characteristics observed at different temperatures can be accurately accounted for with no adjustable parameters, by considerations of the mechanical compression of the membrane due to stresses induced by the electric field. Electrical breakdown on this scheme results from an electromechanical instability in the membrane. On this basis the present results indicate that the elastic modulus of the region of the membrane where breakdown occurs, decreases by a factor of 2 with increasing temperature from 4 to 30°C. On the assumption of a thickness of 4.0 nm and a dielectric constant of 5, the elastic modulus is estimated to have a value of 5×106 Nm–2 at 20°C.  相似文献   

15.
Results are presented from experiments on the explosion of 30.5-μm tungsten wires at a current density of up to 140 MA/cm2 and resistive-heating time of 40–100 ns. The experiments were performed both with and without preheating of wires and at different polarities of the high-voltage electrode. The effect of plasma production at the electrodes on the initiation of breakdown along the exploding wire was investigated by using a frame camera. It is shown that, when the polarity of the high-voltage electrode is positive, breakdown begins with the formation of a bright spot on the wire surface near the cathode, whereas at the negative polarity, breakdown begins with the formation of bright spots on the cathode surface. A comparative analysis of the main characteristics of wire explosions is performed. It is shown that preheating of the conductor increases the resistive-heating time and, accordingly, the energy deposited in the wire core. This effect takes place during explosions of both single wires and wire arrays. The evolution of the state of a metal during the explosion (including melting and evaporation) is studied by one-dimensional simulations by using a semiempirical equation of state describing the properties of tungsten over a wide range of parameters.  相似文献   

16.
Cells exposed to short and intense electric pulses become permeable to a number of various ionic molecules. This phenomenon was termed electroporation or electropermeabilization and is widely used for in vitro drug delivery into the cells and gene transfection. Tissues can also be permeabilized. These new approaches based on electroporation are used for cancer treatment, i.e., electrochemotherapy, and in vivo gene transfection. In vivo electroporation is thus gaining even wider interest. However, electrode geometry and distribution were not yet adequately addressed. Most of the electrodes used so far were determined empirically. In our study we 1) designed two electrode sets that produce notably different distribution of electric field in tumor, 2) qualitatively evaluated current density distribution for both electrode sets by means of magnetic resonance current density imaging, 3) used three-dimensional finite element model to calculate values of electric field for both electrode sets, and 4) demonstrated the difference in electrochemotherapy effectiveness in mouse tumor model between the two electrode sets. The results of our study clearly demonstrate that numerical model is reliable and can be very useful in the additional search for electrodes that would make electrochemotherapy and in vivo electroporation in general more efficient. Our study also shows that better coverage of tumors with sufficiently high electric field is necessary for improved effectiveness of electrochemotherapy.  相似文献   

17.
One of the key problems of the Baikal project, intended to create a superpower pulsed generator for ICF experiments, is that of matching a multimodule plasma opening switch (POS) to a liner load. An intermediate inductance or a separating discharger is proposed to be used as a matching element between the POS and the load. An analysis is made of the effect of both versions of the matching system on the synchronization of the POS modules and the energy transfer from the inductive storage to the load. Methods for optimizing the matching element are examined. It is shown that the POS modules can be synchronized and the inductive storage energy can be efficiently transferred to a low-impedance load. A multigap vacuum discharger with a point anode and plane cathode is to be used as a separating discharger. Such an electrode system make it possible to concentrate the electric field at the point anode and to substantially enhance the electric strength of the inter-electrode gap. Results are presented from experimental studies of vacuum breakdown in such an electrode system with a gap length of about 1 mm.  相似文献   

18.
Results from experimental studies of an electric discharge operating between a solid anode and an electrolytic cathode in a wide pressure range are presented. Specific features of the discharge ignition and discharge shape and peculiarities the structure of cathode spots on the electrolyte surface and anode spots on the surface of the solid electrode are revealed. The dependences of the current density on the electrolytic cathode and metal anode on the total current are measured, and the spatial distribution of the electric field is determined. A transition of a glow discharge into a multichannel discharge is investigated. The experimental data on the frequency and amplitude of the current and voltage pulsations are presented. Requirements for the maintenance of an electric discharge with an electrolytic cathode are formulated using the obtained experimental results.  相似文献   

19.
Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.  相似文献   

20.
A nonintrusive contactless method for studying the parameters of the electrode region of a capacitive low-pressure RF discharge is proposed. The method involves the measurements of dc and ac electric voltages at the elements of the discharge circuit with subsequent calculations of both the electrostatic potential drop across the electrode sheath and the sheath thickness by using relations derived in the paper. For a collisionless electrode sheath, the density of the positive-ion current onto the electrode and the charge density at the plasma boundary are determined. It is shown experimentally that the method can be successfully applied to studying capacitive RF discharges with inner or outer electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号