首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The review of the methods for obtaining the runaway electron beams in the gas discharge is performed. The new method is offered, using which the beam is first formed in a narrow gap (∼1 mm) between the cathode and the grid and then it is accelerated by the field of the plasma column of the anomalous self-sustained discharge in the main gap (10–20 mm long). The electron beams with an energy of about 10 keV and current density of 103 A/cm2 at a molecular nitrogen pressure of up to 100 Torr have been obtained experimentally. The results of research of the UV nitrogen laser with an excitation via runaway electron beam and radiation of energy of ∼1 mJ are given. The UV nitrogen laser generation with the energy of ∼1 mJ has been obtained by the runaway electron beams.  相似文献   

2.
A new type of beam discharge, i.e., beam discharge with a distributed virtual cathode (VC) is proposed and considered by numerical simulation. The discharge is established during counter motion of high-current electron beams in a gas-filled equipotential cavity and is characterized by a state of hot dense electron plasma of primary electrons. The discharge temporal dynamics is studied. It is shown that the VC lifetime depends linearly from this sum in a wide range of the sum of beam currents, from the boundary current of two-beam instability to the critical current of Pierce instability. Generation of nonlinear electrostatic structures shaped as phase bubbles in the discharge is detected, and their dynamics is studied. The parameters are determined, at which the multiple coexistence of phase bubbles and their coalescence during collisions is observed.  相似文献   

3.
A concept is proposed of a plasma pixel based on an open-discharge microstructure. The concept employs the capability of an open discharge to generate an electron beam at moderate (1–3 kV) discharge voltages with an efficiency close to 100%. To determine the possible application of this type of discharge, the parameters of the electron beams generated in open discharges operating in different working gases at various geometries of the discharge cell and various dimensions of the discharge channel were investigated. The electric potential distributions in the dielectric plate channel and in the cathode cavity were measured. The effect of additional illumination by radiation generated in the drift space on the current-voltage characteristic of the discharge is studied. Based on the results obtained, a noncontradictory model of a discharge capable of very efficiently generating an electron beam is proposed. According to this model, the main contribution to the electron beam comes from the photoelectron emission from the cathode under the action of radiation from the working-gas atoms excited by fast heavy particles in a highly nonuniform electric field in the cathode cavity. Such a field also scatters ions and fast atoms, thus reducing their fluxes toward the cathode. The results obtained indicate that highly efficient light sources and plasma panels can be created on the basis of open-discharge microstructures with a cathode cavity. Such microstructures allow very efficient conversion of electric energy into light.  相似文献   

4.
The amplitude?temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude?temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.  相似文献   

5.
A technique employing electron beams generated by an open gas discharge is proposed for measuring the light efficiency of phosphor coatings of cathodoluminescent screens. The total light efficiencies of various phosphor coatings in the medium excitation energy range (? < 7 keV) are estimated with allowance for both the direct radiation flux outgoing from the phosphor screen and the backward radiation flux propagating along the exciting electron beam. The possibility is demonstrated of creating a high-luminance (~20000 cd/m2) cathodoluminescent source with a light efficiency of ~60 lm/W.  相似文献   

6.
A mechanism is proposed that can lead to radial ion acceleration in a plasma discharge excited by an electron beam in a relatively weak longitudinal magnetic field. The mechanism operates as follows. The beam generates an azimuthally asymmetric slow potential wave, which traps electrons. Trapped magnetized electrons drift radially with a fairly high velocity under the combined action of the azimuthal wave field (which is constant for them) and a relatively weak external longitudinal magnetic field. The radial electron flux generates a radial charge-separation electric field, which accelerates unmagnetized plasma ions in the radial direction. The ion flux densities and energies achievable in experiments with kiloelectronvolt electron beams in magnetic fields of up to 100 G are estimated.  相似文献   

7.
Generation of high-voltage high-current electron beams in a low-pressure (P = 0.1–1 Torr) gas discharge is studied experimentally as a function of the discharge voltage and the sort and pressure of the plasma-forming gas. The density of the plasma formed by a high-current electron beam is measured. Experiments on ultrahigh charging of targets exposed to a pulsed electron beam with an energy of up to 25 keV, an electron current density of higher than 1 A/cm2, a pulse duration of up to 1 μs, and a repetition rate of up to 1 kHz are described. A numerical model of ultrahigh charging of dust grains exposed to a high-energy electron beam is developed. The formation of high-energy positive ions in the field of negatively charged plane and spherical targets is calculated. The calculations performed for a pulse-periodic mode demonstrate the possibility of achieving neutron yields of higher than 106 s–1 cm–2 in the case of a plane target and about 109 s–1 in the case of 103 spherical targets, each with a radius of 250 μm.  相似文献   

8.
Laser interferometry methods were used to measure the density of free electrons and degree of plasma ionization in a hydrogen target intended for experiments on determining energy losses of heavy ion beams in an ionized matter. It is shown that the linear electron density can be varied in the range from 3.3 × 1017 to 1.3 × 1018 cm?2 by varying the initial plasma parameters (the hydrogen pressure in the target and the discharge current). The error in measuring the linear electron density in the entire range of the varied plasma parameters was less than 1%. The maximum degree of plasma ionization achieved at the initial gas pressure of 1 mbar was 0.62 ± 0.05.  相似文献   

9.
This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.  相似文献   

10.
Observations of ordered-structure electron beams generated by high-voltage nanosecond discharges in relatively dense (0.04–1 torr) molecular gases at high overvoltages are reported. The beams of accelerated ions generated by high-voltage nanosecond discharges are found to exhibit the same ordered structure. The observed structure of ion beams casts doubt on the mechanisms for the formation of a striped electron-beam structure that assume a regular ecton distribution. Parameters characterizing the temporal behavior of the accelerated electron and ion beams are measured.  相似文献   

11.
Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.  相似文献   

12.
Electron beam dose distribution is dependent on the beam energy and complicated trajectory of particles. Recent treatment planning systems using Monte Carlo calculation algorithm provide accurate dose calculation. However, double check of monitor units (MUs) based on an independent algorithm is still required. In this study, we have demonstrated single equation that reproduces the measured relative output factor (ROF) that can be used for MU calculation for electron radiotherapy. Electron beams generated by an iX (Varian Medical Systems) and a PRIMUS (Siemens) accelerator were investigated. For various energies of electron beams, the ROF at respective dmax were measured using diode detector in a water phantom at SSD of 100 cm. Curve fitting was performed with an exponential generalized equation ROF = α(β – e−γR) including three variables (α, β, γ) as a function of field radius and electron energy. The correlation coefficients between the ROF measured and that calculated by the equation were greater than 0.998. For ROF of Varian electron beams, the average values of all fitting formulas were applied for two of the constants; α and β. The parameter γ showed good agreement with the quadratic approximation as a function of mean energy at surface (E0). The differences between measured and calculated ROF values were within ±3% for beams with cutout radius of ≥1.5 cm for electron beams with energies from 6 MeV to 15 MeV. The proposed formula will be helpful for double-check of MUs, as it requires minimal efforts for MU calculation.  相似文献   

13.
Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m2 at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 1012 cm?3 and an electron temperature of 1 eV in a volume of >0.2 m3 was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm2.  相似文献   

14.
In electron radiotherapy, shielding material is required to attenuate beam and scatter. A newly introduced shielding material, tungsten functional paper (TFP), has been anticipated to become a very useful device that is lead-free, light, flexible, and easily processed, containing very fine tungsten powder at as much as 80% by weight. The purpose of this study was to investigate the dosimetric changes due to TFP shielding for electron beams. TFP (thickness 0–15 mm) was placed on water or a water-equivalent phantom. Percentage depth ionization and transmission were measured for 4, 6, and 9 MeV electron beams. Off-center ratio was also measured using film dosimetry at depth of dose maximum under similar conditions. Then, beam profiles and transmission with two shielding materials, TFP and lead, were evaluated. Reductions of 95% by using TFP at 0.5 cm depth occurred at 4, 9, and 15 mm with 4, 6, and 9 MeV electron beams, respectively. It is found that the dose tend to increase at the field edge shaped with TFP, which might be influenced by the thickness. TFP has several unique features and is very promising as a useful tool for radiation protection for electron beams, among others.  相似文献   

15.
A mechanism for the formation of the structure of an optical discharge in Besselian laser beams is proposed on the basis of analyzing numerous experiments. The discharge structure is determined by the periodicity of the field of a Besselian beam in the radial and longitudinal directions and also depends on the power and duration of the heating pulse. In the initial stage of the plasma channel formation, the configuration of the channel inhomogeneities follows the discharge structure. If the spatial scale of the discharge structure is small, then the developing channel evolves into a homogeneous state. The time required for the structural inhomogeneities of the plasma channel to be smoothed out is estimated as a function of their scale length. __________ Translated from Fizika Plazmy, Vol. 27, No. 9, 2001, pp. 846–858. Original Russian Text Copyright ¢ 2001 by Pyatnitsky.  相似文献   

16.
The first part of the review is presented which is dedicated to the time-resolved method of imaging and measuring the spatial distribution of the intensity of millimeter waves by using visible continuum (VC) emitted by the positive column (PC) of a dc discharge in a mixture of cesium vapor with xenon. The review focuses on the operating principles, fundamentals, and applications of this new technique. The design of the discharge tube and experimental setup used to create a wide homogeneous plasma slab with the help of the Cs–Xe discharge at a gas pressure of 45 Torr are described. The millimeter-wave effects on the plasma slab are studied experimentally. The mechanism of microwave-induced variations in the VC brightness and the causes of violation of the local relation between the VC brightness and the intensity of millimeter waves are discussed. Experiments on the imaging of the field patterns of horn antennas and quasi-optical beams demonstrate that this technique can be used for good-quality imaging of millimeter-wave beams in the entire millimeter-wavelength band. The method has a microsecond temporal resolution and a spatial resolution of about 2 mm. Energy sensitivities of about 10 μJ/cm2 in the Ka-band and about 200 μJ/cm2 in the D-band have been demonstrated.  相似文献   

17.
A theoretical model is presented that describes the charging of dust grains in the positive plasma column of a stratified glow dc discharge in argon. A one-dimensional self-consistent model is used to obtain axial profiles of the electric field, as well as the electron energy distribution function along the axis of the discharge tube. Radial profiles of the electric field are determined in the ambipolar diffusion approximation. It is assumed that, in the radial direction, the electron distribution function depends only on the total electron energy. Two-dimensional distributions of the discharge plasma parameters are calculated and used to determine the potential and charge of a test dust grain at a certain point within the discharge and the electrostatic forces acting on it. It is shown that the grain charge distribution depends strongly on the nonequilibrium electron distribution function and on the nonuniform distribution of the electric field in a stratified glow discharge. A discussion is presented on the suspension of dust grains, the separation of grains by size in the discharge striations, and a possible mechanism for the onset of vortex dust motion at the edge of a dust cloud.  相似文献   

18.
Energy exchange between an electron beam and plasma during a beam-plasma discharge in a closed cavity excited by the electron beam is analyzed using computer simulations by the KARAT code. A method allowing one to analyze the beam-plasma interaction in the quasi-steady stage of the discharge is proposed. Qualitative characteristics of energy exchange (such as beam energy losses and the energy distributions of beam electrons and plasma particles leaving the discharge) both during spontaneous discharge excitation and in the presence of initial beam modulation by regular or noiselike signals are determined. The results obtained enable one to estimate the energy characteristics of a plasma processing reactor based on a beam-plasma discharge.  相似文献   

19.
New types of beam-plasma devices generating intense stochastic microwave radiation in the interaction of electron beams with hybrid plasma waveguides were developed and put into operation at the National Science Center Kharkov Institute of Physics and Technology (Ukraine). The objective of the paper is to discuss the results of theoretical and experimental studies and numerical simulations of the normal and oblique incidence of linearly polarized electromagnetic waves on an interface between a vacuum and an overcritical plasma. The main results of the reported investigations are as follows: (i) for the parameter values under analysis, the transmission coefficient for microwaves with a stochastically jumping phase is one order of magnitude greater than that for a broadband regular electromagnetic wave with the same spectral density; (ii) the electrons are heated most efficiently by obliquely incident waves with a stochastically jumping phase and, in addition, the electron distribution function has a high-energy tail; and (iii) necessary conditions for gas breakdown and for the initiation of a microwave discharge in stochastic fields in a light source are determined. The anomalously large transmission coefficient for microwaves, the anomalous character of the breakdown conditions, the anomalous behavior of microwave gas discharges, and the anomalous nature of collisionless electron heating, are attributed to stochastic jumps in the phase of microwave radiation.  相似文献   

20.
A simplified model describing the steady state of a helicon discharge in a low-pressure plasma is considered. The electron Langmuir frequency of the plasma produced by the discharge is shown to be much higher than the electron gyrofrequency. It is found that the gas medium is ionized and the electrons are heated primarily by the extraordinary mode. The calculated electron density depends nonmonotonically on the magnetic field, in agreement with the results of numerous experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号