首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Lymph nodes of human fetuses from the 11th to the 20th gestational week (g.w.) were investigated by light- and electron microscopy under particular consideration of the development of the T-cell and the B-cell regions and their specific reticulum cells. Lymph node development begins as a mesenchymal condensation, containing capillaries and mesenchymal cells; this primordium bulges into a lymph sac. Within the primordium of the lymph node granulopoiesis and erythropoiesis occur temporarily from the 12th to the 14th g.w. The first lymphoid cells and undifferentiated blast cells are seen in the 12th g.w.; monocytes and macrophages can be found from the 13th g.w. onward.The development of the T-cell regions begins during the 13th g.w., before differentiation into cortex and medulla becomes obvious in the 14th g.w. Near the marginal sinus, cells displaying features of interdigitating reticulum cells (IDC) show similarities to monocytes. The morphological differentiation of the IDC is complete in the 17th g.w. when they are found in the paracortical region. Among the IDC, lymphoid cells with features of thymocytes are arranged in small groups.The first indication of the development of B-cell regions can be recognized in the 14th g.w. when precursors of dendritic reticulum cells (DRC) are seen near the marginal sinus; this area also displays lymphoblasts, immunoblasts, and plasmoblasts. During the 20th g.w. small primary follicles are discernible in the outer cortex; in addition to blast cells they contain small lymphocytes, none of which show features of thymocytes. The morphological development of DRCs is not entirely complete until the 20th g.w.; however, some cells already show a characteristic network of interwoven processes.The probable origin of (i) the IDC from monocytes, and (ii) the DRC and fibroblastic reticulum cells from a common type of mesenchymal precursor cells, as well as their significance for a specific micromilieu in the T-cell and the B-cell regions, are discussed.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft and the Sonderforschungsbereich 111 of the Deutsche ForschungsgemeinschaftThe authors appreciate the contribution of human fetal material from Dr. J. von Hollweg and Dr. J. Körner, Hospital Heidberg, Hamburg, and the excellent technical assistance of Mrs. O.M. Bracker, Mrs. H. Hansen, Mrs. R. Köpke, Mrs. I. Knauer, Mrs. F. Müller, Mrs. H. Siebke, and Mrs. H. Waluk  相似文献   

2.
Summary Tonsils of human fetuses at the 8th to the 28th gestational week (g.w.) were investigated by electron microscopy, enzyme histochemistry, and immunohistochemistry on cryostat sections. The development of the tonsilla palatina starts during the 14th g.w. when the mesenchyme underlying the mucous membrane of the tonsillar cavity becomes invaded by mononuclear wandering cells. In fetuses of about the 16th g.w. epithelial crypts grow down into the connective tissue and are infiltrated by T-lymphocytes. At the same time, precursors of interdigitating cells (IDC) can be identified among the epithelial cells. Frequently, lymphocytes and IDC-like cells are in close contact. From these findings it is concluded that the infiltrated crypt epithelium in the human tonsilla palatina represents a T-cell region. Primary follicles develop in earlier fetal stages than in all other secondary lymphoid organs. They contain precursors of dendritic reticulum cells and lymphoid cells that belong to the B-cell line. These primary follicles may be considered as the first assemblage of B-cell regions in human fetal lymphoid tissue. The present findings indicate that the formation of different stationary elements during the development of B-cell regions and T-cell regions is an important factor for the homing and antigen-dependent maturation of different subpopulations of immunocompetent lymphoid cells.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft, particularly the Sonderforschungsbereich 111The authors appreciate the contribution of human fetal material from Dr. J. von Hollweg and Dr. J. Körner from the Hospital Heidberg c.o. Hamburg and the excellent technical assistance of Mrs. O.-M. Bracker, Mrs. H. Hansen, Mrs. I. Knauer, Mrs. R. Köpke, Mrs. I. König, Mrs. F. Müller, Mrs. H. Siebke and Mrs. H. Waluk  相似文献   

3.
We investigated first stages of thymic medulla organisation in foetuses of Wistar strain rats. between 13th and 17th days of foetal life (GD). Medullary cells were identified by immunocytochemical localisation of neuron-specific enolase (NSE) as well as by traits of ultrastructure. The first thymic medullary precursor cells which were reactive for NSE were at first spread all over the thymic primordium. In the period of thymus colonisation by lymphoid cells, the following stages were distinguished in medulla organisation: (1) migration of NSE+ cells to the central portion of the thymus (GD 14-15), (2) small medullary epithelial patches, distributed within the thymus (GD 16), and (3) expansion of medullary patches into medullary compartment (GD 17). At the second and third stages of the medulla organisation, an increase in the number of NSE+ cells, followed by differentiation of their ultrastructure and increase in their biological activity were observed. We conclude that formation of medullary architectural pattern is controlled by interactions between maturing epithelial cells and developing lymphoid cells and by angiogenesis in the region.  相似文献   

4.
Summary Changes in the ultrastructure of the thymus of the turtle Mauremys caspica, with special reference to its non-lymphoid components, were studied in relation to the seasonal cycle. The thymic cortex contains framework-forming epithelial-reticular cells and free macrophages, while the medulla includes, in addition, mature and presumptive pro-interdigitating cells. The ultrastructural features of these cells are generally similar to those described for non-lymphoid components of the mammalian thymus. The turtle thymus undergoes cortical involution in spring, with recovery periods in May–June and during autumn. A moderate involution occurs in winter. At the beginning of spring, cortical (but not medullary) epithelial-reticular cells show degenerative changes, probably related to high levels of circulating testosterone. In spring and autumn, mature interdigitating cells are absent, but macrophages, monocytes, and pro-interdigitating cells are found. During May–June, the cortical epithelial-reticular population recovers and macrophages, monocytes, and interdigitating cells are actively phagocytic. In summer, the epithelial-reticular cells in both cortex and medulla display normal ultrastructural features; mature and immature interdigitating cells are absent and some macrophages are detected occasionally. The results suggest that non-lymphoid components of the reptilian thymus can play a role in governing T-lymphocyte differentiation, and that the thymic cortex and medulla exhibit different cycles of seasonal activity.  相似文献   

5.
Summary The epithelial framework of the human thymus has been studied in parallel by immunohistochemical methods at the light- and electron-microscopic levels. Different monoclonal antibodies were used, reacting with components of the major histocompatibility complex, keratins, thymic hormones and other as yet antigenically undefined substances, which show specific immunoreactivities with human thymus epithelial cells.The electron-microscopic immunocytochemical observations clearly confirm microtopographical differences of epithelial cells not only between the thymic cortex and medulla, but also within the cortex itself. At least four subtypes of epithelial cells could be distinguished: 1) the cortical surface epithelium; 2) the main cortical epithelial cells and thymic nurse cells; 3) the medullary epithelial cells; and 4) the epithelial cells of Hassall's corpuscles.The various epithelial cell types of the thymus display several common features like tonofilaments, desmosomes and some surface antigens as demonstrated by anti-KiM3. In other respects, however, they differ from each other. The cortical subtype of thymic epithelial cells including the thymic nurse cells shows a distinct pattern of surface antigens reacting positively with antibodies against HLA-DR (anti-HLA-DR) and anti-21A62E. Electron-microscopic immunocytochemistry with these antibodies clearly reveals a surface labeling and a narrow contact to cortical thymocytes particularly in the peripheral cortical regions. An alternative staining pattern is realized by antibodies to some antigens associated with other subtypes of thymic epithelial cells. Medullary epithelial cells as well as the cortical surface epithelium react likewise positively with antibodies to special surface antigens (anti-Ep-1), to special epitopes of cytokeratin (anti-IV/82), and to thymic hormones (anti-FTS). The functional significance of distinct microenvironments within the thymus provided by different epithelial cells is discussed in view of the maturation of T-precursor cells.Glossary of Abbreviations Anti-X anti-X antibody - APUD-cells amine precursor uptake and decarboxylation (gastro-intestinal endocrine cells) - DAB diamino-benzidine - DMSO dimethyl sulfoxide - FTS facteur thymique sérique - HLA-A, B, C human leucocyte antigen, A, B, C-region related - HLA-DR human leucocyte antigen, D-region related - IDC interdigitating cell - MHC major histocompatibility gene complex - PBS phosphate-buffered saline - TNC thymic nurse cell This investigation was supported by grants from the Deutsche Forschungsgemeinschaft, and its Sonderforschungsbereich 111Fellow of the Alexander von Humbold-Stiftung, Institute of Pathology, University of Würzburg, Federal Republic of GermanyThe authors appreciate the contribution of human thymus tissue from Professor Alexander Bernhard, Abteilung kardiovasculäre Chirurgie der Universität Kiel; the gift of monoclonal antibodies from Dr. M.J.D. Anderson, Dr. M. Dardenne and Dr. H.J. Radzun; and the excellent technical assistence of Mrs. O.M. Bracker, Mrs. H. Hansen, Mrs. R. Köpke, Mrs. M. v. Kolszynski, Mrs. J. Quitzau, Mrs. H. Siebke, and Mrs. H. Waluk  相似文献   

6.
Summary The three-dimensional structure of the rat thymus was studied by combined scanning and transmission electron microscopy. The thymus consists mainly of four types of cells: epithelial cells, lymphocytes, macrophages, and interdigitating cells (IDCs).The epithelial cells form a meshwork in the thymus parenchyma. Cortical epithelial cells are stellate in shape, while the medullary cells comprise two types: stellate and large vacuolated elements. A continuous single layer of epithelial cells separates the parenchyma from connective tissue formations of the capsule, septa and vessels. Surrounding the blood vessels, this epithelial sheath is continuous in the cortex, while it is partly interrupted in the medulla, suggesting that the blood-thymus barrier might function more completely in the cortex.Cortical lymphocytes are round and vary in size, whereas medullary lymphocytes are mainly small, although they vary considerably in surface morphology.Two types of large wandering cells, macrophages and IDCs, could be distinguished, as well as intermediate forms. IDCs sometimes embraced or contacted lymphocytes, suggesting their role in the differentiation of the latter cells.Perivascular channels were present around venules and some arterioles in the cortico-medullary region and in the medulla. A few lymphatic vessels were present in extended perivascular spaces.The present study suggests the possible existence of two routes of passage of lymphocytes into the general circulation. One is via the lymphatics, while the other is through the postcapillary venules into the blood circulation. Our SEM images give evidence that lymphocytes use an intracellular route, i.e., the endothelium of venules.  相似文献   

7.
The present paper reports the distribution of lymphoid and non-lymphoid cell types in the thymus of mice. To this purpose, we employed scanning electron microscopy and immunohistology. For immunohistology we used the immunoperoxidase method and incubated frozen sections of the thymus with 1) monoclonal antibodies detecting cell-surface-differentiation antigens on lymphoid cells, such as Thy-1, T-200, Lyt-1, Lyt-2, and MEL-14; 2) monoclonal antibodies detecting the major histocompatibility (MHC) antigens, H-2K, I-A, I-E, and H-2D; and 3) monoclonal antibodies directed against cell-surface antigens associated with cells of the mononuclear phagocyte system, such as Mac-1, Mac-2, and Mac-3. The results of this study indicate that subsets of T lymphocytes are not randomly distributed throughout the thymic parenchyma; rather they are localized in discrete domains. Two major and four minor subpopulations of thymocytes can be detected in frozen sections of the thymus: 1) the majority of cortical thymocytes are strongly Thy-1+ (positive), strongly T-200+, variable in Lyt-1 expression, and strongly Lyt-2+; 2) the majority of medullary thymocytes are weakly Thy-1+, strongly T-200+, strongly Lyt-1+, and Lyt-2- (negative); 3) a minority of medullary cells are weakly Thy-1+, T-200+, strongly Lyt-1+, and strongly Lyt-2+; 4) a small subpopulation of subcapsular lymphoblasts is Thy-1+, T-200+, and negative for the expression of Lyt-1 and Lyt-2 antigens; 5) a small subpopulation of subcapsular lymphoblasts is only Thy-1+ but T-200- and Lyt-; and 6) a small subpopulation of subcapsular lymphoblasts is negative for all antisera tested. Surprisingly, a few individual cells in the thymic cortex, but not in the medulla, react with antibodies directed to MEL-14, a receptor involved in the homing of lymphocytes in peripheral lymphoid organs. MHC antigens (I-A, I-E, H-2K) are mainly expressed on stromal cells in the thymus, as well as on medullary thymocytes. H-2D is also expressed at a low density on cortical thymocytes. In general, anti-MHC antibodies reveal epithelial-reticular cells in the thymic cortex, in a fine dendritic staining pattern. In the medulla, the labeling pattern is more confluent and most probably associated with bone-marrow-derived interdigitating reticular cells and medullary thymocytes. We discuss the distribution of the various lymphoid and non-lymphoid subpopulations within the thymic parenchyma in relation to recently published data on the differentiation of T lymphocytes.  相似文献   

8.
Mice given multiple doses of sublethal irradiation to both the thymus and the peripheral lymphoid tissues showed major transient, and some persistent disruptions in general thymic architecture and in thymic stromal components. At 2 wk after total lymphoid irradiation (TLI), the thymus lacked identifiable medullary regions by immunohistochemical analyses. Medullary stromal cells expression MHC Ag or a medullary epithelial cell Ag, as well as medullary macrophages, were undetectable. Instead, the processes of cortical epithelial cells were observed throughout the entire thymus. Strikingly, thymocyte subsets with mature phenotypes (CD4+CD8- and CD4-CD8+) were present in the apparent absence of a medulla. This early, gross effect was rapidly reversed such that by 1 to 2 mo after TLI, medullary areas with MHC Ag-positive cells were evident. However, abnormalities in a subset of medullary stromal cells appeared to be more persistent. Medullary epithelial cells, identified by the MD1 mAb, were greatly reduced in number and abnormally organized for at least 4 mo after TLI. In addition, macrophages containing endogenous peroxidase activity, normally abundant in medullary regions, were undetectable at all times examined after TLI. Therefore, this irradiation regimen induced both transient and long term effects in the thymus, primarily in medullary regions. These results suggest that TLI may be used as an experimental tool for studying the impact of selective depletion of medullary stromal cells on the development of specific T cell functions.  相似文献   

9.
中华鳖胸腺显微和亚显微结构及其在进化上的意义   总被引:6,自引:0,他引:6  
郭琼林 《动物学报》1999,45(2):207-213
应用透射电子显微镜观察了中华鳖胸腺的显微和亚显微结构。发现中华鳖胸腺从结构上可分为皮质和髓质,皮质富含淋巴细胞,髓质富含上皮性网状细胞。在各发育期中华鳖胸腺皮质、髓质交界处和髓质区有明显的囊状胸腺小体和交错突细胞。在200g以上的成年鳖胸腺内发现有同心圆状胸腺小体。电镜下,胸腺内淋巴细胞分为大、中、小3型。上皮性网状细胞从亚显微结构上分为支持型和分泌型。胸腺囊包括细胞内囊和细胞间囊,以细胞内囊居多  相似文献   

10.
Twenty-six human thymomas were studied in an attempt to correlate their morphological appearance with the type and degree of T-lymphocyte maturation, as determined by acid alpha-naphthyl-acetate esterase (ANAE) activity and immunological analysis. Four normal human thymuses were used for purposes of comparison. Two morphological patterns were identified in the thymomas. The distinction was based largely on similarities between the neoplastic epithelial cells and normal cortical and medullary epithelial cells, and on the relative proportions of epithelial cells and lymphocytes. By these criteria "medullary" and "cortical" patterns were identified. In several thymomas both patterns were present in the same tumor ("mixed-type pattern"), producing alternating dark cortical-like areas and lighter foci of medullary differentiation. A good correlation was found between the two patterns and the phenotype of the T-associated lymphoid component. ANAE activity, which was completely lacking in normal cortical thymocytes, was almost absent in the phenotypically immature T-cells of cortical-type thymomas. By contrast, in the medullary-type thymomas, T-cells showed immunological features in common with medullary thymocytes. This was characterized by strong ANAE activity in the majority of cells with a staining pattern corresponding to that of peripheral T-lymphocytes. In addition, most of the proliferating epithelial cells in medullary-type thymomas stained strongly with anti-cytokeratin and anti-epidermal-type keratin antisera. In the mixed-type thymomas the epithelial cell morphology and the immunohistochemical and enzymic features of the T-cells were found to be closely related to the respective cortical--or medullary-like areas. It was concluded that the various characteristics of normal thymic cortex and medulla studied are also present in thymomas. In particular, in medullar-type thymomas the presence of many of the features of normal thymic medulla, such as a squamous cell component, macrophages and interdigitating reticulum cells, may constitute a microenvironment which operates actively in T-cell education. This may account for the functional activities, characteristic of peripheral T-lymphocytes, which T-lymphocytes attain in these thymomas.  相似文献   

11.
This study compares the toxic effects of native cyclosporin A (CyA) with those of targeted CyA that is conjugated with the anti-rat-thymocyte antibody of rabbit originvia the N-(2-hydroxypropyl)methacrylamide (HPMA) carrier bearing digestible, reactive oligopeptide side chains. Ten toxic doses of native CyA (50 mg/kg i.p.) given to young adult rats in the course of 14 d produced a severe renal lesion—diffuse microvacuolization of the proximal tubules in the deep cortex, and hypergranulation of juxtaglomerular regions. Severe atrophy of the thymic medulla was documented by morphometry. In the cortex the epithelial reticular (but not deep interdigitating) cells showed ultrastructural signs of severe degeneration and lysis. The immature CD4+8+ double-positive cortical lymphocytes were preserved whereas, the single-positive medullary thymocytes were greatly depleted; there was also a restriction of MHC class II antigen expression in the medulla. The number of medullary B cells was increased. The cytokeratin net was focally shrunken in the cortex and almost negative in the medulla, with loss of Hassall's corpuscles. After ten corresponding doses of antibody-targeted conjugated CyA no damage to the renal tubules and arterioles appeared and the antiGBM or immune-complex deposition was absent. The thymus had a normal medulla with numerous mature thymocytes and the cortical epithelial reticulum remained well preserved. Thus, the main toxic effects of CyA could be eliminated by targeting. The T-cell-targeted drug was tested for preserved immunosuppressive properties and non-toxic character of HPMA copolymer carrier.  相似文献   

12.
In the present investigation the localization and activity of alkaline, neutral, and acid hydrolases of the thymus were studied during development of rats and mice and of various adult species using histochemical methods. If different procedures of tissue pretreatment were employed, several inhibition effects and morphological as well as enzyme histochemical artifacts occurred dependent on the mode of tissue pretreatment. After embedding in glycol methacrylate, sections of the thymus showed a better structural preservation than cryostat sections but were accompanied by a drastic decrease of activity and low localization quality of the final reaction products especially in the case of protease studies with 4-methoxy-2-naphthylamine peptides as substrates. Smears of thymic cells facilitated the allocation of enzymes to mobile or fixed cells in the stroma of the thymus. The perivascular localization of aminopeptidase M could only be shown with combined techniques. In comparison, primarily the proteases yielded information on the thymic stroma and in this context especially on the epithelial reticular cells and the stroma proper but also on thymocytes (lymphocytes) and enabled a species-dependent subdivision of the thymic reticulum already in the light microscope. Enzyme histochemically the development of the rat and mouse thymus could be subdivided into an early period and perinatal (pre- and postnatal) period of functional differentiation. Morphological (proliferation of cortical lymphocytes) and enzyme histochemical changes (disappearance of dipeptidylpeptidase IV, significant loss of alkaline phosphatase activity and beginning activity increase of aminopeptidase M) occurred primarily at the transition from the early to the prenatal period. During the postnatal phase, a significant activation of lysosomal enzymes in the thymic medulla and general enzymatic differentiation of the cortical epithelial reticular cells were found. Species differences and species similarities for the respective enzymes and their localization as well as for the thymic cells were noticed for adult rats, mice, guinea-pigs, hamsters, and marmoset monkeys. Differences were true especially for the thymocytes; less species differences were seen for the epithelial reticular cells; capsular and perivascular connective tissue and the macrophages behaved rather similarly. Species-independently certain medullary epithelial reticular cells showed high and typically localized alkaline phosphatase activities and species-dependently also high activities of neutral hydrolases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The stromal cells of the thymus of sham-irradiated and sublethal fission neutron-irradiated CBA/H mice were analyzed with immunohistology, using monoclonal antibodies directed to I-A and H-2K antigens as well as specific determinants for cortical and medullary stromal elements. In the control thymuses, I-A expression in the thymus shows a reticular staining pattern in the cortex and a confluent staining pattern in the medulla. In contrast, H-2K expression is mainly confluently located in the medulla. Whole body irradiation with 2.5 Gy fission neutrons reduces within 24 hr the cortex to a rim of vacuolized "nurse cell-like" epithelial cells, largely depleted of lymphoid cells. The localization of I-A antigens changes in the cortex and I-A determinants are no longer associated with or localized on epithelial reticular cells. Medullary stromal cells, however, are more or less unaffected. A high rate of phagocytosis is observed during the first 3 days after irradiation. About 5 days after irradiation, the thymus becomes highly vascularized and lymphoid cells repopulate the cortex. The repopulation of the thymic cortex coincides with the appearance of a bright H-2K expression in the cortex which is associated with both stromal cells as well as lymphoid blasts. During the regeneration of the thymus, the thymic stromal architecture is restored before the expression of cell surface-associated reticular MHC staining patterns. The observed sequential changes in the thymic microenvironment are related to the lymphoid repopulation of the thymus.  相似文献   

14.
吴金英  林浩然 《动物学报》2008,54(2):342-355
本文通过解剖及组织切片技术、光学显微镜、透射和扫描电子显微镜技术,对斜带石斑鱼(Epinephelus coioides)胸腺器官组织进行了观察研究。结果表明:斜带石斑鱼胸腺实质主要由胸腺细胞(淋巴细胞)和网状上皮细胞构成。鱼体从Ⅰ龄之后,其胸腺发生明显的变化,与幼鱼有所不同,主要是胸腺可明显区分为三个区域:胸腺外皮质区、内皮质区和髓质区。外皮质区主要由网状上皮细胞、黏液细胞、成纤维细胞和少量淋巴细胞构成,细胞排列疏松;内皮质区主要由密集的淋巴细胞和网状上皮细胞组成,以含有大量的淋巴细胞为特征;髓质区主要由淋巴细胞和较多的网状上皮细胞构成,总体特征是淋巴细胞数量比内皮质区的少,且细胞排列较疏松。外皮质区、内皮质区相当于高等脊椎动物的皮质;髓质区相当于高等脊椎动物的髓质。髓质区之下有结缔组织,在Ⅱ龄以上的成体出现胸腺小体(Hassall's corpuscles)或类似胸腺小体的结构,而且随着年龄的增加,胸腺外皮质区增厚,结缔组织增加,还表现在内皮质区和髓质区组织逐渐萎缩变薄,胸腺的细胞组成类型和淋巴细胞数量上有所变化等等。这些现象在Ⅱ龄鱼开始出现,即胸腺呈现退化迹象,在Ⅲ龄以上鱼体呈现明显的退化和萎缩。胸腺表面扫描电镜结果表明:其上皮细胞表面具有微嵴以及由微嵴组成的指纹状结构,有一些微孔分布。透射和断面扫描电镜的结果进一步表明:胸腺组织内的细胞成分复杂,除了淋巴细胞和网状上皮细胞外,还具有巨噬细胞、肥大细胞、肌样细胞、浆细胞、指状镶嵌细胞和纤维细胞等。  相似文献   

15.
Summary The present study deals with the localization and ultrastructure of S-100-immunoreactive cells in the human thymus. These immunoreactive cells are distributed mainly in the medulla with some scattered elements in the cortex. Electron-microscopic observation revealed that the cells are characterized by an irregularly shaped nucleus, tubulovesicular structures in the cytoplasm and characteristic interdigitations of the plasma membrane. The cells often embrace lymphocytes with their branched processes. On the basis of these morphological features, the immunostained elements were identified as interdigitating cells (IDCs). The immunocytochemistry for S-100 visualizes the precise distribution and extension of the IDCs under the light microscope and indicates that the IDCs form no structural networks such as those established by the thymic epithelial cells. Since the IDCs in human lymph nodes have also been reported to contain S-100-like immunoreactivity, S-100 protein can be regarded as a useful marker for identifying the IDCs in the human thymus and other lymphoid organs.  相似文献   

16.
The thymus plays a crucial role in the development of T lymphocytes providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiation into mature T-cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow–derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment and their complex interactions during the T-cell maturation process with the objective of contributing to a better understanding of the function of the thymus as well as assist in the search for new therapeutic approaches to improve the immune response in various pathological conditions are summarized here.  相似文献   

17.
Summary Seven thymuses from children between 1 and 12 years were examined by electron microscopy. Biopsies had been taken during surgical correction of congenital heart defects.In all cases we found interdigitating reticulum cells (IRC) in the medulla and inner cortex. These cells resembled the IRC which have been described previously in the thymus-dependent regions of the spleen and lymph node. They were characterized by an irregularly shaped nucleus, narrow cisterns of rough endoplasmic reticulum, and widespread interdigitation and invagination of the cell membrane. The surfaces of the IRC were in close contact with those of small lymphocytes, sometimes polysomal lymphatic cells, epithelial cells, and occasionally with those of lymphatic cells containing ergastoplasm.The IRC is apparently a specific cell of thymus-dependent regions. It may be that the IRC in the thymus, lymph node, and spleen contribute to the microenvironment needed for the differentiation of T-cells.Supported by the Deutsche Forschungsgemeinschaft, SFB 111/CII and III.—We wish to thank Miss M. Neubert and Mrs. R. Köpke for their technical assistance and Mrs. M. Soehring for her help with the translation.  相似文献   

18.
Summary Cultured thymic fragments correspond to the thymic microenvironment depleted of lymphocytes and dendritic cells. When these fragments are implanted under the kidney capsule of congenitally athymic rats, lymphocytes and dendritic cells of host origin enter the graft and induce thymus-dependent immunity in the recipient. This paper describes the ultrastructure of the fragments and the changes that occur during the restoration of normal thymic architecture. At the end of the culture period of 6–9 days and in the early stages after implantation, the grafts consist of keratin-containing epithelial cells of unusual morphology that can be labelled with antibodies raised against the epithelium of the mid/deep cortex and the subcapsule/medulla. Normal thymic architecture develops, including nerves and blood vessels, as lymphocytes populate the environment, and by 4–6 weeks the epithelial cells are the same phenotypically and ultrastructurally as those found in normal rat thymus. However, some areas without lymphocytes still contain the atypical epithelial cells seen before implantation. Large multinucleated giant cells are also present with a few associated epithelial cells of subcapsular/medullary phenotype. In conclusion, the cultured thymic fragments contain a hitherto unknown precursor epithelial cell with an atypical ultrastructure and phenotype that is not seen in normal development.  相似文献   

19.
Summary Murine thymic macrophages and interdigitating cells, also called thymic accessory cells, were characterized by means of light- and electron microscopy. The cells were studied in suspension, during isolation by enzymatic digestion and in vivo. They were observed as isolated cells or as components of multicellular complexes, some of which were rosettes and were composed of lymphoid cells centered on each type of accessory cell. We also noted other cell complexes including macrophages that resembled classical epithelial nurse cells. We consider that multicellular complexes represent lymphostromal associations already existing in vivo, because we observed them at the periphery of thymic pieces undergoing enzymatic treatment. The heterogeneity of macrophages that we observed in vitro was also noted in vivo. In vivo macrophages were of three types: classical phagocytic cells distributed throughout the gland, cortical elongated cells in close contact with lymphoid blast cells, and atypical nurse cells containing mitotic cells and located in the inner cortex. The morphological aspects of the latter two cell types suggest that cortical macrophages in vivo have other roles: they can be interpreted as images of positive or negative cell selection. We also believe that rosettes are formed by elongated cortical macrophages when they are enzymatically isolated from the thymus.Part of this work was presented at the Second Thymus Workshop, Rolduc, The Netherlands, April 1989  相似文献   

20.
Lymphotoxin-β receptor (LTβR) axis plays a crucial role in development and compartmentalization of peripheral lymphatic organs. But, it is also required for the appropriate function and maintenance of structural integrity of the thymus: in LTβR-deficient animals the clonal deletion of autoreactive lymphocytes is impaired and differentiation of thymic medullary epithelial cells is disturbed. In this study, using several markers, we showed that thymic metallophilic macrophages were lacking in LTβR-deficient mice. In tumor necrosis factor receptor-I (p55)-deficient mice (which we used as positive control) thymic metallophilic cells were located, similarly as in normal mice, in the thymic cortico-medullary zone at the junction of cortex and medulla. These findings show that LTβR is necessary for maintenance of metallophilic macrophages in the thymus and provide further evidence that these cells may represent a factor involved in thymic negative selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号