首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of a single post whole-body low-dose irradiation (50 cGy of γ-ray) on mice with ferric nitrilotriacetate (Fe3+-NTA)-induced transient hepatopathy. As a result, low-dose irradiation accelerated the rate of recovery. Based on the changes in glutamic oxaloacetic transaminase (GOT) activities, glutamic pyruvic transaminase (GPT) activities and lipid peroxide levels, it was shown that hepatopathy was improved by low-dose irradiation 3 h after Fe3+-NTA administration. This may be because of the enhancement of antioxidant agents such as total glutathione (GSH + GSSG), glutathione peroxidase (GPX), glutathione reductase (GR) and γ-glutamylcysteine synthetase (γ-GCS) by low-dose irradiation. These findings suggest that low-dose irradiation relieved functional disorders at least in the livers of mice with active oxygen species related diseases.  相似文献   

2.
The catalase activities in the blood and organs of the acatalasemic (C3H/AnLCsb-Csb) mouse of the C3H strain are lower than those of the normal (C3H/AnLCSa-Csa) mouse. We examined the effects of post low-dose (0.5 Gy) X-ray irradiation which reduced the oxidative damage under carbon tetrachloride-induced hepatopathy in acatalasemic or normal mice. As a result, the 0.5 Gy irradiation after carbon tetrachloride administration decreased the glutamic oxaloacetic and glutamic pyruvic transaminase activity in the acatalasemic mouse blood to a level similar to that of the acatalasemic mouse blood not treated with carbon tetrachloride; this is in contrast to a high-dose (15 Gy) irradiation. In the same manner, pathological disorder was improved by 0.5 Gy irradiation. The fat degeneration in normal mice was quickly reduced, in contrast to acatalasemic mice. These findings suggest that low-dose irradiation after carbon tetrachloride administration accelerates the rate of recovery and that catalase plays an important role in the recovery from hepatopathy induced by carbon tetrachloride, in contrast to high-dose irradiation.  相似文献   

3.
We examined the effects of irradiation (50 cGy of gamma-ray) reducing the oxidative damage in carbon tetrachloride (CCl4)-hepatopathy mice. We made pathological examinations and analyzed transaminase activity (glutamic oxaloacetic transaminase and glutamic pyruvic transaminase), lipid peroxide level and the activities of endogenous antioxidants in the mouse. The irradiation was found to accelerate the recovery. Based on pathological examination as well as changes in each transaminase activity and lipid peroxide levels, it was shown that hepatopathy improved 3 d after the irradiation. The activities of glutathione reductase and glutathione peroxidase rapidly elevated after irradiation, and the total glutathione content gradually increased in the irradiation group. Both activities of gamma-glutamylcysteine synthetase and catalase were higher than normal at all times after the irradiation and gradually increased. In addition, the gamma-glutamylcysteine synthetase activity changed in a similar fashion to the total glutathione content. However, superoxide dismutase activity in both groups decreased and that of the irradiation group was significantly lower than that of the sham-irradiation group. These findings suggest that low-dose radiation relieved functional disorder at least in the liver of mice with active oxygen diseases.  相似文献   

4.
5.
Jejunal crypt survival after fractionated total body irradiation of C3H mice given at dose rates of 1.2 or 0.08 Gy/min was studied. The fractionation effect was more pronounced at the high dose rate than at the low dose rate. Analysis of the data according to the linear-quadratic survival curve model yielded an alpha/beta value at 1.2 Gy/min of 13.3 Gy and at 0.08 Gy/min of 96 Gy.  相似文献   

6.
Ionizing radiation damage to the genome of a non-cycling mammalian cell is analyzed using continuous time Markov chains. Immediate damage induced by the radiation is modeled as a batch Poisson arrival process of DNA double strand breaks (DSBs). Different kinds of radiation, for example gamma rays or alpha particles, have different batch probabilities. Enzymatic modulation of the immediate damage is modeled as a Markov process similar to the processes described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete exchange model, which postulates that radiation induced DSBs can subsequently either undergo enzymatically mediated repair (restitution) or can participate pairwise in chromosome exchanges, some of which make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. A complete solution of the Markov chain is known for the case that the exchange rate constant is negligible so that no irremediable chromosome lesions are produced and DSBs are the only damage to the genome. Using PDEs for generating functions, a perturbation calculation is made assuming the exchange rate constant is small compared to the repair rate constant. Some non-perturbative results applicable to very prolonged irradiation are also obtained using matrix methods: Perron-Frobenius theory, variational methods and numerical approximations of eigenvalues. Applications to experimental results on expected values, variances and statistical distributions of DNA lesions are briefly outlined.Continuous time Markov chain models are the most systematic of those current radiation damage models which treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g. ignore diffusion limitations). They contain most other homogeneous models as special cases, limiting cases or approximations. However, applying the continuous time Markov chain models to studying spatial dependence of DSB interactions, which is generally believed to be very important in some situations, presents difficulties.  相似文献   

7.
Moderate hyperthermia (4 h at 40 degrees C) enhances V-79 cell radiosensitivity at low irradiation dose rates with a maximum thermal enhancement ratio (TER) of 1.38. In comparison, the TER measured at acute dose rate is 1.13. Heat treatments given before and during irradiation are equally effective, and more so than postirradiation hyperthermia. Hyperthermia-induced inhibition of sublethal damage repair is a probable cause of the observed effect.  相似文献   

8.
9.
Han W  Zhu L  Jiang E  Wang J  Chen S  Bao L  Zhao Y  Xu A  Yu Z  Wu L 《Mutation research》2007,624(1-2):124-131
Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of gamma-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process (<1h post irradiation), and the generation of micronuclei (MN), a sensitive marker for relative long process of RIBE. Our results showed that in the absence of irradiation, NaCl at elevated concentration such as 8.0, 9.0 and 10.0g/L did not significantly increase the frequency of gamma-H2AX foci-positive cells and the number of foci per positive cell comparing with that NaCl at a normal concentration (6.8g/L). However, with 0.2cGy alpha-particle irradiation, the induced fraction of gamma-H2AX foci-positive cells and the number of induced gamma-H2AX foci per positive cell were significantly increased in both irradiated and adjacent non-irradiated regions. Similarly, the induction of MN by 0.2cGy alpha-particle irradiation also increased with the elevated NaCl concentrations. With N(G)-methyl-l-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2cGy alpha-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose alpha-particle irradiation and nitric oxide generated by irradiation was also very important in this process.  相似文献   

10.
11.
Streptozotocin-induced liver damage in mice   总被引:1,自引:0,他引:1  
Diabetes incidence and liver damage was studied and identified in C3H-s mice 21 days after Streptozotocin (SZ) administration (250 mg/kg/i.v.) at 04 hs (4 a.m.) and 16 hs (4 p.m.). Metabolic disturbances were assessed by daily control of glycosuria and serum glucose determined at the end of the experiment. Liver damage was controlled by light and electron microscopy. Both effects showed a circadian variation, with significant greatest values in the 16-h-injected group. Liver damage appeared whether the animals became diabetic or not, consisting in degranulation of the rough-surfaced endoplasmic reticulum, mitochondrial swelling with loss of cristae and edema of the ground substance, with flocculent amorphous precipitate. In some hepatocytes, a dilated cisternae of the endoplasmic reticulum was seen. It was concluded that: a) beta-cell and hepatocytes have a synchronic circadian sensitivity to SZ; b) liver damage was present whether the animals became diabetic or not, suggesting the presence of a different threshold for SZ effect in hepatocytes. These results might be taken into account when planning SZ use, either for experimental or clinical purposes.  相似文献   

12.
The non-targeted effects of human exposure to ionising radiation, including transgenerational instability manifesting in the children of irradiated parents, remains poorly understood. Employing a mouse model, we have analysed whether low-dose acute or low-dose-rate chronic paternal γ-irradiation can destabilise the genomes of their first-generation offspring. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in DNA samples extracted from sperm of directly exposed BALB/c male mice, as well as from sperm and the brain of their first-generation offspring. For acute γ-irradiation from 10-100 cGy a linear dose-response for ESTR mutation induction was found in the germ line of directly exposed mice, with a doubling dose of 57 cGy. The mutagenicity of acute exposure to 100 cGy was more pronounced than that for chronic low-dose-rate irradiation. The analysis of transgenerational effects of paternal irradiation revealed that ESTR mutation frequencies were equally elevated in the germ line (sperm) and brain of the offspring of fathers exposed to 50 and 100 cGy of acute γ-rays. In contrast, neither paternal acute irradiation at lower doses (10-25 cGy), nor low-dose-rate exposure to 100 cGy affected stability of their offspring. Our data imply that the manifestation of transgenerational instability is triggered by a threshold dose of acute paternal irradiation. The results of our study also suggest that most doses of human exposure to ionising radiation, including radiotherapy regimens, may be unlikely to result in transgenerational instability in the offspring children of irradiated fathers.  相似文献   

13.
14.
Influence of absorbed dose rate has been studied in BALB/c mice for early intestinal tolerance. After selective abdominal irradiation, LD50 at 5.5 days increases from 12.36 to 20.22 and 21.79 Gy when dose rate decreases from 0.61 to 0.054 and 0.026 Gy/mn. LD50 at 6.5 days increases from 12.05 to 19.22 and 21.58 Gy respectively. The LD50 ratios are then 1.6 and 1.8 for both endpoints. After total body irradiation. LD50 at 5.5 days increases from 9.92 to 15.20and 16.83 Gy when dose rate decreases from 0.56 to 0.049 and 0.024 Gy/mn. The corresponding LD50 ratios, i.e. 1.5 and 1.7, are then similar to the former ones. Increase of LD50 when decreasing dose rate is in agreement with that expected taking into account only repair of sublethal lesions, for the generally accepted cellular models.  相似文献   

15.
The effects of low doses of ionizing radiation have been a matter of important debate over the last few years. The point of discussion concerns the validity of the linear dose-response extrapolation for low doses, used by international organizations, to establish radio-protection norms. Here, we contributed to this discussion by investigating the induction of chromosome aberrations by low to moderate doses ranging from 0 to 10 Gy in root meristem cells of 6-day-old Pisum plantlets. After acute irradiation of plantlets by a (60)Co source, the percentage of root tip meristem cells displaying chromosome aberrations was estimated immediately after irradiation and after 20 h recovery time. The dose-effect curves show non-linear responses, especially in the low dose range (0- 1 Gy), which is of particular interest. After 20 h of recovery, a steep increase of aberrations was observed for cells exposed to 0.4 Gy, followed by a plateau for doses until 1 Gy. There was an irradiation effect on plant growth during the first and second generations, showing the persistence of cell division anomalies as a long term effect of acute irradiation. This result suggests the induction of a genomic instability.Our results, in agreement with some obtained in animals, show rather non-linear dose-effect responses, with notably higher biological effects of low doses than expected.  相似文献   

16.
17.
Levels of DNA-protein cross-links (DPC) and DNA single-strand breaks (SSB) in spleen lymphocytes were studied in mice exposed to low-intensity gamma-radiation (1.7 mGy/day) for 1, 4, 10, 20, and 30 days. The spleen mass and count of lymphocytes isolated from this organ also has been investigated. The significant increase in the DPC level as compared to the control occurred on the 10-th and 30-th days of irradiation at doses of 1.7 and 5.1 cGy, accordingly. The number of spleen lymphocytes normalized to organ mass significantly decreased on the 4-th and 30-th days of the experiment. No increase was found in levels of alkali-labile sites and SSB. In contrast, the increase in the amount of duplex form DNA was recorded on the 4-th and 30-th days of the experiment. Our indicate that DPC formation after irradiation at low doses represents some form of cellular response to the damaging agent.  相似文献   

18.
  1. Download : Download high-res image (119KB)
  2. Download : Download full-size image
  相似文献   

19.
The effects of ionizing radiation on bacteria are generally evaluated from the dose-dependent survival ratio, which is determined by colony-forming ability and mutation rate. The mutagenic damage to cellular DNA induced by radiation has been extensively investigated; however, the effects of irradiation on the cellular machinery in situ remain unclear. In the present work, we irradiated Escherichia coli cells in liquid media with gamma rays from 60Co (in doses up to 8 kGy). The swimming speeds of the cells were measured using a microscope. We found that the swimming speed was unaltered in cells irradiated with a lethal dose of gamma rays. However, the fraction of motile cells decreased in a dose-dependent manner. Similar results were observed when protein synthesis was inhibited by treatment with kanamycin. Evaluation of bacterial swimming speed and the motile fraction after irradiation revealed that some E. coli cells without the potential of cell growth and division remained motile for several hours after irradiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号