共查询到20条相似文献,搜索用时 0 毫秒
1.
The Ras protein activates at least three different pathways during early development. Two of them regulate mesodermal gene expression and the third is thought to participate in the control of actin cytoskeleton dynamics via the Ral protein. From a yeast two-hybrid screen of a Xenopus maternal cDNA library, we identified the Xenopus orthologue of the Ral interacting protein (RLIP, RIP1 or RalBP1), a putative effector of small G protein Ral. Previously, we observed that a constitutively activated form of Ral GTPase (XralB G23V) induced bleaching of the animal hemisphere and disruption of the cortical actin cytoskeleton. To demonstrate that RLIP is the effector of RalB in early development, we show that the artificial targeting of RLIP to the membrane induces a similar phenotype to that of activated RalB. We show that overexpression of the Ral binding domain (RalBD) of XRLIP, which binds to the effector site of Ral, acts in competition with the endogenous effector of Ral and protects against the destructive effect of XralB G23V on the actin cytoskeleton. In contrast, the XRLIP has a synergistic effect on the activated form of XralB, which is dependent on the RalBD of RLIP. We provide evidence for the involvement of RLIP by way of its RalBD on the dynamics of the actin cytoskeleton and propose that signalling from Ral to RLIP is required for gastrulation. 相似文献
2.
Vertebrate hoxc8 homologous genes have been shown to be involved in the formation of lower thoracic/lumbar vertebrae during early embryonic development. We report the isolation of a Xenopus hoxc8 (Xhoxc8), which shows 94% amino acid sequence identity to the mouse counterpart. Xhoxc8 is initially expressed in a broad region of blastopore lip at gastrular stage; however, at later stages, the region of expression is progressively restricted to the dorsal region caudal to the third somite and to the central trunk region of abdomen. Retinoic acid treatment that caused a severe malformation in antero-posterior axis did not induce any significant change in the spatio-temporal expression pattern of Xhoxc8 mRNA. Antisense RNA injection into 2- or 4-cell stage embryos resulted in a severe malformation in the abdominal structure leading to embryonic death. The results strongly indicate that Xhoxc8 expression is critical for the formation of abdominal structure. 相似文献
3.
Knowledge of when and where signaling pathways are activated is crucial for understanding embryonic development. In this study, we have systematically analyzed and compared the signaling pattern of four major pathways by localization of the activated key components beta-catenin (Wnt proteins), MAPK (tyrosine kinase receptors/FGF), Smad1 (BMP proteins) and Smad2 (Nodal/activin/Vg1). We have determined semi-quantitatively the distribution of these components at 18 consecutive stages in Xenopus development, from early blastula to tailbud stages, by immunofluorescence on serial cryosections. The image obtained is that of very dynamic and widespread activities, with very few inactive regions. Signaling fields can vary from large gradients to restricted areas with sharp borders. They do not respect tissue boundaries. This direct visualization of active signaling verifies several predictions inferred from previous functional data. It also reveals unexpected signal patterns, pointing to some poorly understood aspects of early development. In several instances, the patterns strikingly overlap, suggesting extensive interplay between the various pathways. To test this possibility, we have manipulated maternal beta-catenin signaling and determined the effect on the other pathways in the blastula embryo. We found that the patterns of P-MAPK, P-Smad1 and P-Smad2 are indeed strongly dependent on beta-catenin at this stage. 相似文献
4.
Expression and post-transcriptional regulation of ornithine decarboxylase during early Xenopus development. 总被引:5,自引:0,他引:5
H B Osborne C Duval L Ghoda F Omilli T Bassez P Coffino 《European journal of biochemistry》1991,202(2):575-581
In this paper we show that large changes in ornithine decarboxylase (ODC) activity occurred during early Xenopus development. Following fertilization, this enzyme activity rises with a quantitatively correlated accumulation of putrescine and spermidine. This increase in ODC activity was associated with an increased translation of the maternal ODC mRNA, which was stable in the embryo and whose polyadenylation increased slightly between fertilization and the mid-blastula transition (MBT). ODC activity was stable in cycloheximide-treated embryos, indicating that before the MBT this enzyme was not degraded. After the MBT, ODC activity fell, but no decrease in this mRNA was observed. In gastrulae, ODC mRNA was both increased in amount and polyadenylated. The reduced ODC activity at this stage of development was not associated with a fall in ribosome loading of the mRNA. Treatment of post-MBT embryos with cycloheximide lead to an accentuation of the normally observed decrease in ODC activity. Expression of Xenopus ODC in mutant ODC-deficient Chinese hamster ovary cells (C 55.7 cells) showed that the Xenopus enzyme was rapidly degraded and can be regulated post-translationally by polyamines, indicating that the post-MBT fall in ODC activity could be caused by a change in protein turnover or by polyamine-mediated regulation. 相似文献
5.
A M MacNicol A J Muslin E L Howard A Kikuchi M C MacNicol L T Williams 《Molecular and cellular biology》1995,15(12):6686-6693
The Raf-1 gene product is activated in response to cellular stimulation by a variety of growth factors and hormones. Raf-1 activity has been implicated in both cellular differentiation and proliferation. We have examined the regulation of the Raf-1/MEK/MAP kinase (MAPK) pathway during embryonic development in the frog Xenopus laevis. We report that Raf-1, MEK, and MAPK activities are turned off following fertilization and remain undetectable up until blastula stages (stage 8), some 4 h later. Tight regulation of the Raf-1/MEK/MAPK pathway following fertilization is crucial for embryonic cell cycle progression. Inappropriate reactivation of MAPK activity by microinjection of oncogenic Raf-1 RNA results in metaphase cell cycle arrest and, consequently, embryonic lethality. Our findings demonstrate an absolute requirement, in vivo, for inactivation of the MAPK signaling pathway to allow normal cell cycle progression during the period of synchronous cell divisions which occur following fertilization. Further, we show that cytostatic factor effects are mediated through MEK and MAPK. 相似文献
6.
The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side. 相似文献
7.
8.
ATM, the gene mutated in ataxia telangiectasia, is a protein essential for handling DNA strand breaks. We recently isolated the
Xenopus homologue of ATM, X-ATM and we report here the detailed expression pattern of the protein and the mRNA during early Xenopus development. During the cleavage stages, ATM protein was concentrated in and around the nuclei of all cells with low levels
of expression also detected in the cytoplasm. Following neurulation, increased protein levels were detected in the nuclei
of developing somites and in the central nervous system. Areas of high protein expression correlated with areas of increased
mRNA expression which was detected in the nuclei of somites and the developing lens.
Received: 2 December 1999 / Accepted: 4 February 2000 相似文献
9.
Nagamine K Matsuda A Asashima M Hori T 《Biochemical and biophysical research communications》2008,372(4):886-891
Previously, we described the DNA microarray screening of vascular endothelial cells that were formed by treatment of aggregates prepared from Xenopus animal cap cells with activin and angiopoietin-2. One of the genes identified in this screening showed homology to human RASGRP2 which plays a role in the regulation of GTP-GDP exchange of the Ras and Rap proteins, and was named XRASGRP2. In the present study, we analyzed the expression pattern of xrasgrp2 during Xenopus embryogenesis. The xrasgrp2 mRNA was expressed after stage 24, as assessed by stage PCR analysis. Whole-mount in situ hybridization showed that xrasgrp2 mRNA was located in the vascular region of the embryo. Loss-of-function analysis revealed that the formation of blood and endothelial cells in the explants transplanted into Xenopus embryos was inhibited by antisense morpholino oligonucleotides that block xrasgrp2 translation. These results suggest that XRASGRP2 plays a role in angiogenesis in Xenopus embryos. 相似文献
10.
R Le Guellec A Couturier K Le Guellec J Paris N Le Fur M Philippe 《Biology of the cell / under the auspices of the European Cell Biology Organization》1991,72(1-2):39-45
We have isolated and characterized a cDNA which contains the entire coding sequence of Xenopus laevis raf protein. raf mRNA is identified as a member of the class of maternal RNAs. It is already relatively abundant at the beginning of oogenesis and is stable at least until the midblastula transition. The RNA is also detected later during embryogenesis in particular in gastrula, neurula, tailbud and feeding tadpole. We have also found the RNA in several adult tissues (skin, testis, stomach, intestine) at different levels. 相似文献
11.
Translational control during early development 总被引:17,自引:0,他引:17
J D Richter 《BioEssays : news and reviews in molecular, cellular and developmental biology》1991,13(4):179-183
Early development in many animals is programmed by maternally inherited messenger RNAs. Many of these mRNAs are translationally dormant in immature oocytes, but are recruited onto polysomes during meiotic maturation, fertilization, or early embryogenesis. In contrast, other mRNAs that are translated in oocytes are released from polysomes during these later stages of development. Recent studies have begun to define the cis and trans elements that regulate both translational repression and translational induction of maternal mRNA. The inhibition of translation of some mRNAs during early development is controlled by discrete sequences residing in the 3' and 5' untranslated regions, respectively. The translation of other RNAs is due to polyadenylation which, at least in oocytes of the frog Xenopus laevis, is regulated by a U-rich cytoplasmic polyadenylation element (CPE). Although similar, the CPE sequences of various mRNAs are sufficiently different to be bound by different proteins. Two of these proteins and their interactions are described here. 相似文献
12.
13.
14.
15.
16.
A vertebrate eye was induced via a series of coordinated inductive interactions. Here, we describe a novel in vitro system to induce eye formation at high frequency using Xenopus early gastrulae. The eye formed in vitro is morphologically similar to the normal eye. When the in vitro eye was transplanted into a stage-33 tadpole, the optic nerve was seen extending from the grafted eye to the tectum of the host brain and the in vitro eye graft was retained after metamorphosis. In addition, we transplanted the eye formed in vitro into a tadpole with both eyes removed. The resultant juvenile frogs could perceive brightness using the grafted eye and thereby control their skin color, suggesting that the eye formed in vitro could function normally. 相似文献
17.
Xenopus embryos at various development stages were incubated in the presence of labelled substrates and the 14CO2 production determined. From the rates of oxidation of glucose labelled in positions 1 and 6 and from that of radioactive acetate, pyruvate and glutamate, it was concluded that the Embden-Meyerhof pathway and the Krebs cycle are functional during early embryogenesis, but that their relative participation in the metabolic processes is limited and increases from gastrulation onwards. Early development is characterized by the predominance of the pentose cycle and the glutamate-aspartate cycle. Furthermore, it was shown that glutamate may be the main energy source up to gastrulation. 相似文献
18.
Duan LJ Broomfield JA Drysdale TA 《The International journal of developmental biology》2003,47(4):299-302
We have isolated the Xenopus homologue of Muscle LIM protein (MLP, CRP3) and examined its expression during early embryonic development. MLP is only expressed in the differentiated heart during early development and is expressed in a subset of other striated muscles during later stages. There is no MLP expression during primary myogenesis in the somites, although it is found in adult skeletal muscle. 相似文献
19.
Summary All cells in the optic vesicle of Xenopus embryos from stages 27 to 31 have the same ultrastructure. They are elongated and appear to extend from the internal to the external surfaces of the optic vesicle. They are bound together by terminal bars at the internal (lumen) margin, have microvilli and a cilium on the internal margin, and are covered with a basement membrane on the external margin. Their cytoplasm contains abundant free ribosomes, polysomes, mitochondria, yolk and lipid inclusions, and sparse endoplasmic reticulum.Although other studies have shown that retinal ganglion cells originate at stages 29–30 and have their central connections determined before stage 31, these events could not be correlated with any ultrastructural changes. The first sign of differentiation in retinal cells was an increase in endoplasmic reticulum and Golgi apparatus at stage 32. Microtubules and microfilaments appeared at stage 33 in association with the first axonal outgrowth from retinal ganglion cells. Cytodifferentiation proceeded gradually until large areas of Nissl substance had developed by stage 35. At larval stage 48 the ganglion cells resembled those in the adult.The authors wish to thank Marija Duda for her excellent technical assistance during this investigation.Supported by Public Health Service Predoctoral Fellowship No. 5 FO 1 GM37746-02 and Postdoctoral Fellowship 1 F2 NB37,746-01.Supported by Grant GB8315 from the National Science Foundation. 相似文献
20.
In amphibian and mammalian systems, regulation of Na+ transport via the Na,K-ATPase plays an important role in distinct developmental processes such as blastocoele formation and neurulation. In this study, we have followed the Na,K-ATPase activity, the biosynthesis, and the cellular accumulation of catalytic alpha-subunits after fertilization of Xenopus laevis eggs up to neurula formation. Our data show that Na,K-ATPase activity increases significantly between stages 4 and 6 and again between stages 13 and 24. The four-fold rise in Na,K-ATPase activity during blastocoele formation is not mediated by an increased cellular pool of alpha-subunits. On the other hand, a five-fold increase of the biosynthesis rate around midblastula precedes a progressive accumulation up to neurula stage mainly of alpha 1-subunits and to a lesser extent of a second alpha-immunoreactive species. In contrast, newly synthesized glycoproteinic beta 1-subunits of Na,K-ATPase cannot be detected up to late neurula. These data indicate that (1) upregulation of Na,K-ATPase activity during blastocoele and neurula formation are mediated by different regulation mechanisms and (2) alpha- and possibly beta-isoforms are expressed in a developmentally regulated fashion during early Xenopus development. 相似文献