首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of carbamoylphosphate synthetase (CPSase) and aspartate carbamoyltransferase (ACTase), the first two enzymes of the pyrimidine biosynthetic pathway, in chloroplasts was investigated. In dark-grown radish (Raphanus sativus) seedlings, light induced a prominent increase in CPSase activity, but had little effect on ACTase activity. Both enzymes were found in chloroplasts isolated from radish cotyledons and leaves of spinach (Spinacia oleracea), soybean (Glycine max), and corn (Zea mays). The higher activity of ACTase relative to CPSase is discussed in relation to the instability of carbamoylphosphate, the product of the CPSase, and to the control of pyrimidine synthesis. Based on these results, the function of CPSase and ACTase in chloroplasts is discussed.  相似文献   

2.
Lovatt et al. (1979 Plant Physiol 64: 562-569) have previously demonstrated that end-product inhibition functions as a mechanism regulating the activity of the orotic acid pathway in intact cells of roots excised from 2-day-old squash plants (Cucurbita pepo L. cv Early Prolific Straightneck). Uridine (0.5 millimolar final concentration) or one of its metabolites inhibited the incorporation of NaH14CO3, but not [14C]carbamylaspartate or [14C]orotic acid, into uridine nucleotides (ΣUMP). Thus, regulation of de novo pyrimidine biosynthesis was demonstrated to occur at one or both of the first two reactions of the orotic acid pathway, those catalyzed by carbamylphosphate synthetase (CPSase) and aspartate carbamyltransferase (ACTase). The results of the present study provide evidence that ACTase alone is the site of feedback control by added uridine or one of its metabolites. Evidence demonstrating regulation of the orotic acid pathway by end-product inhibition at ACTase, but not at CPSase, includes the following observations: (a) addition of uridine (0.5 millimolar final concentration) inhibited the incorporation of NaH14CO3 into ΣUMP by 80% but did not inhibit the incorporation of NaH14CO3 into arginine; (b) inhibition of the orotate pathway by added uridine was not reversed by supplying exogenous ornithine (5 millimolar final concentration), while the incorporation of NaH14CO3 into arginine was stimulated more than 15-fold when both uridine and ornithine were added; (c) incorporation of NaH14CO3 into arginine increased, with or without added ornithine when the de novo pyrimidine pathway was inhibited by added uridine; and (d) in assays employing cell-free extracts prepared from 2-day-old squash roots, the activity of ACTase, but not CPSase, was inhibited by added pyrimidine nucleotides.  相似文献   

3.
Turner JG 《Plant physiology》1986,80(3):760-765
Mesophyll cells in discs cut from primary leaves of Phaseolus vulgaris L. were exposed to a concentration of phaseolotoxin that inhibited ornithine carbamoyltransferase (OCTase) measured in an extract of the tissue. This treatment also blocked incorporation of exogenous [14C] ornithine into protein-arginine of the mesophyll cells. By contrast more than 80% of the [14C]ornithine supplied to untreated tissue was incorporated into protein-arginine in 565 minutes. Protein synthesis in mesophyll cells was unaffected by phaseolotoxin because treated tissue continued to incorporate [14C]leucine into protein at the same rate as the untreated control. The phaseolotoxin-treated tissue should therefore remain metabolically competent and this prediction was reinforced by the finding that the rate of photosynthetic O2 evolution per unit chlorophyll was similar for tissue from the phaseolotoxin-induced chlorosis and from green healthy tissue. Phaseolotoxin also blocked OCTase but not protein synthesis in exponentially growing cell suspension cultures. Phaseolotoxin rapidly inhibited growth of Escherichia coli and this effect was rapidly reversed by arginine. Thus, the toxic effects of phaseolotoxin may be attributed to the inhibition of OCTase which, in turn, blocks arginine synthesis. Protein accumulation is blocked as a consequence, but protein synthesis is unaffected. Chlorosis is due to reduced chlorophyll synthesis and this is presumably a consequence of the lower protein level in affected tissue.  相似文献   

4.
Exponential culture of aSaccharomyces cerevisiae strain with overexpressed aspartate carbamoyltransferase activity (ACTase) was chilled in ice and fractionated by centrifugal elutriation to several cell populations of increasing cell mass. The enzyme activity which belongs to the pyrimidine biosynthesis pathway, was detectedin situ by a specific ultracytochemical reaction: the ACTase byproduct, monophosphate, was precipitated by cerium ions to cerium phosphate. During the outgrowth of nonbudding daughter cells (zero cells) the label appeared first in membranes of nuclear envelope and of mitochondria. In larger zero cells, this label appeared also in the endoplasmic reticulum, microvesicles and plasmalemma. In budding mother cells, the label was conspicuous in the whole cell-membrane complex. In most aged cells the ACTase activity was not detectable. The presence of ACTase activity in membranes of compartments conveying glycoproteinsvia the secretory pathway remains to be explained. To confirm thein situ detection of ACTase activity in membranes, we assayed the enzyme activity in both the 10 000g sediment and supernatant prepared from yeast homogenate precentrifuged at 3000g. From 23 to 43% of ACTase activity was detected in the sediments including membranes of wild-type and ACTase-overexpressing strains.  相似文献   

5.
Primary fetal rat liver cells cultured in medium deficient in, but not free of, arginine in the presence of dialyzed fetal calf serum grow until the final cell density is attained and cells become quiescent in the Go phase of the cell cycle. When growing cells are transferred into arginine free medium, cells become reversibly arrested in Go. Fetal rat liver cells can be induced to synthesize DNA by addition of high levels of arginine to serum free medium. Low arginine levels in the culture medium do not induce cell growth unless serum is present. Serum stimulates arginine uptake in fetal rat liver cells suggesting that serum growth factor(s) act by increasing intracellular arginine levels high enough to initiate the growth cycle. Fractionation of fetal calf serum by gel filtration on G-200 Sephadex yields a partially purified arginine uptake stimulating activity which is eluted from the column in the same fractions that contain fetal rat liver cell growth promoting activity. Insulin induces DNA synthesis in quiescent fetal rat liver cells. Glucagon reverses the stimulatory effects of insulin. N-6,O-2-Dibutyryl adenosine 3:5-cyclic monophosphoric acid (But2c-AMP) (10-minus4 M) and theophilline (10-minus3 M) inhibit arginine uptake and the initiation of DNA synthesis by serum. The role of arginine in the control of DNA synthesis in fetal rat liver cells and the mechanism of action of serum growth factors are discussed.  相似文献   

6.
Serum-deficient ≤0.00003% vol/vol) conditioned medium (CM) obtained from primary cultures of fetal rat hepatocytes initiates DNA synthesis and mitosis in homologous quiescent cultures. CM similarly prepared from 3T3 fibroblast cultures is inactive. At least two conditioning factors are involved in initiating DNA synthesis. The first of these, arginine, is obligatory, synthesized by the cells, and released into the culture medium. The second, a lipid or lipid-containing material, is stable to pH extremes (pH 2, pH 10) and chromatographs with an apparent R1 ~0.5 on silica gel thin-layer plates using hexane-ether (4: 1) as the solvent system. It is suggested that these cultured hepatocytes enter or leave the G0 or early G1 phase of the cell cycle as determined in part by their capacity to use available conditioning factor and nutrient components of the medium, in particular, arginine. Serum factors including serum fraction I (4), insulin, and possibly, lipid-like conditioning material appear to initiate DNA synthesis by controlling cellular processes involved with the enhanced utilization and synthesis of growth-limiting nutrients.  相似文献   

7.
Although variability in the duration of the cell cycle is thought to reflect growth-regulatory processes that control cell cycle progression, the precise timing of the variable period within the G1 phase of the cell cycle has not been defined. In particular, the timing of cell cycle variability in relation to the cell's commitment (R point) to the initiation of DNA synthesis remains controversial. In order to investigate cell cycle variability, indirect immunofluorescence was used to measure the formation of the primary cilium as a possible marker of G1 events in both stimulated quiescent and exponentially growing cells. The primary cilium, an internal "9 + 0" nonmotile structure formed by one of the interphase centrioles, was first detected in postmitotic BALB/c 3T3 cells 5 hr before the initiation of DNA synthesis, an interval similar to that for the reassembly of the primary cilium in serum-stimulated quiescent fibroblasts. This similarity in the timing of ciliation suggests that serum-stimulated quiescent cells reenter the cell cycle in early G1 and recapitulate much of G1. Moreover, the rate of cilia formation in both postmitotic and serum-stimulated quiescent cells was identical to the rate of DNA synthesis initiation. Thus, cell cycle variability occurs before ciliation in both stimulated quiescent and exponentially growing cells. Furthermore, since ciliation also precedes the R point, variability in the centriole cycle occurs before the R point and thus may reflect processes controlling the cell's commitment to the initiation of DNA synthesis.  相似文献   

8.
Sugar beet cells grown in batch suspension culture have been used to study the regulation of polyamine levels during the transition from a quiescent to a proliferating state. The quiescent state was achieved by maintenance of the phytohormone autonomous cells in the stationary phase of the batch culture cycle. After subculture into fresh medium there was an increase in DNA synthesis which was accompanied by a dramatic increase in cellular polyamine levels. The levels of both free and bound cellular putrescine and spermidine within the cells reached a peak before the onset of the first synchronous division. The levels of putrescine, spermidine and to some extent spermine in the culture medium also increased dramatically shortly after subculture. The increase in polyamines was preceded by a rapid but transient increase in omithine decarboxylase (EC 4.1.1.17) and S -adenosylmethionine decarboxylase (EC 4.1.1.50). Arginine decarboxylase (EC 4.1.1.19) and S -adenosylmethionine synthetase (EC 2.5.1.6) activity did not show the same pattern of cell division-related variation. Inhibition of S -adenosylmethionine biosynthesis with methylglyoxal bis-(guanylhydra-zone) (MGBG) reduced cell division in the suspension culture. Inhibitors of ornithine decarboxylase and arginine decarboxylase individually had little effect on cell division, but in combination led to a reduction in cell division. Addition of polyamines and their precursors to cells in the stationary phase of a batch culture cycle led to the induction of expression of a mitotic cyclin sequence ( Bvcycll ).  相似文献   

9.
Sugar beet cells grown in batch suspension culture have been used to study the regulation of polyamine levels during the transition from a quiescent to a proliferating state. The quiescent state was achieved by maintenance of the phytohormone autonomous cells in the stationary phase of the batch culture cycle. After subculture into fresh medium there was an increase in DNA synthesis which was accompanied by a dramatic increase in cellular polyamine levels. The levels of both free and bound cellular putrescine and spermidine within the cells reached a peak before the onset of the first synchronous division. The levels of putrescine, spermidine and to some extent spermine in the culture medium also increased dramatically shortly after subculture. The increase in polyamines was preceded by a rapid but transient increase in omithine decarboxylase (EC 4.1.1.17) and S -adenosylmethionine decarboxylase (EC 4.1.1.50). Arginine decarboxylase (EC 4.1.1.19) and S -adenosylmethionine synthetase (EC 2.5.1.6) activity did not show the same pattern of cell division-related variation. Inhibition of S -adenosylmethionine biosynthesis with methylglyoxal bis-(guanylhydra-zone) (MGBG) reduced cell division in the suspension culture. Inhibitors of ornithine decarboxylase and arginine decarboxylase individually had little effect on cell division, but in combination led to a reduction in cell division. Addition of polyamines and their precursors to cells in the stationary phase of a batch culture cycle led to the induction of expression of a mitotic cyclin sequence ( BvcycII ).  相似文献   

10.
11.
Synchronously growing HeLa cells demonstrated a different profile of DNA synthesis to that observed for Chinese hamster V79-379A cells after treatment with cis-Platinum(II) diamminedichloride (cis-Pt(II)) in the G1 phase of the cell cycle. The progression of G1 phase treated cells into the DNA synthetic phase was not affected. The peak rate of DNA synthesis in the first cycle was decreased in a dose dependent manner. However, no displacement in the time of appearance of this peak rate of DNA synthesis was observed in the first cycle as had been observed in Chinese hamster V79-379A cells. The timing of mitosis after the first cycle was delayed in a dose dependent manner and resulted in a concomitant delay in the appearance of the peak rate of DNA synthesis in the second cycle. The peak rate of DNA synthesis in the second cycle was reduced in a dose dependent manner. The ability of cells to divide after the first cycle was not related to their eventual ability to survive. Incubation of HeLa cells with caffeine after treatment with cis-Pt(II) did not increase the toxicity of cis-Pt(II). This was consistent with the lack of effect of caffeine posttreatment on the rate of DNA synthesis in cis-Pt(II) treated synchronously growing HeLa cells. HeLa cells did not show the characteristics of caffeine sensitive replication repair, nor did they show evidence for the presence of an inducible repair system. The rate of DNA synthesis, cell number and survival data were discussed in relation to a mechanism of cell death proposed for Chinese hamster cells.  相似文献   

12.
13.
Tetrahymena pyriformis were brought to a non-growing state by removal of pyrimidines from their growth medium. During pyrimidine deprivation cell number increased 3- to 4 fold, and this increase was accompanied by one or more complete cycles of macronuclear DNA replication. Autoradiographic studies show that endogenous protein and RNA were turning over throughout starvation and that RNA breakdown products were used to support the DNA synthesis that occurred during the early period of starvation. However, after 72 hours of starvation all DNA synthesis and cell division had ceased. Feulgen microspectrophotometry shows the macronuclei of these cells to have been stopped at a point prior to DNA replication (G1 stage). After pyrimidine replacement the incorporation of H3-uridine, H3-adenosine, and H3-leucine was measured by the autoradiographic grain counting method. The results indicate that RNA synthesis began to increase almost immediately, but that there was a lag of almost an hour before an increase in protein synthesis. In agreement with the autoradiographic data, chemical data also show that cellular content of RNA began to increase shortly after pyrimidine replacement but that cellular protein content did not increase until about one hour later. Pulse labeling of the cells with H3-thymidine at intervals after pyrimidine replacement shows that labeled macronuclei first began to appear at 150 minutes; that 98 per cent of the macronuclei were in DNA synthesis at 240 to 270 minutes; and that the percentage then began to decrease from 300 to 390 minutes, at which time only 25 per cent of the macronuclei were labeled. Cellular content of DNA did not increase for at least 135 minutes after pyrimidine replacement; however, just before the first cells divided (360 minutes) the DNA content had doubled. After pyrimidine replacement the cells first began to divide at 360 minutes, and 50 per cent had divided at 420 minutes; however, all cells had not divided until 573 minutes. This technique of chemical synchronization of cells in mass cultures makes feasible detailed biochemical analysis of events leading to nuclear DNA replication and cell division.  相似文献   

14.
Two different DNA fragments encoding ornithine carbamoyltransferase (OCTase) were cloned from Pseudomonas syringae pv. phaseolicola NPS3121. These fragments did not cross-hybridize and encoded OCTases which differed with respect to their sensitivity to purified phaseolotoxin, an OCTase inhibitor produced by this phytopathogenic bacterium. Recombinant plasmids carrying these DNA fragments complemented OCTase-deficient strains of Escherichia coli and Pseudomonas aeruginosa. Extracts of the complemented E. coli strain contained OCTase enzyme activities with similar degrees of sensitivity to purified phaseolotoxin as extracts of P.s.phaseolicola grown at either 20 or 30°C. The OCTase activity detectable in extracts of P.s.phaseolicola grown at 20°C is insensitive to phaseolotoxin while that detectable in extracts of cells grown at 30°C is sensitive to the toxin. E.coli HB101 harboring recombinant plasmids carrying the gene(s) encoding the phaseolotoxin-insensitive enzyme activity exhibited resistance to purified phaseolotoxin. The results of Tn5 mutagenesis and Southern blotting and the pattern of complementation of OCTase-deficient and Tox- mutant strains suggest that the gene(s) encoding the phaseolotoxin-insensitive OCTase is part of a gene cluster involved in phaseolotoxin production.  相似文献   

15.
Quiescent serum-starved 3T3 cells can be stimulated to initiate DNA synthesis after addition of conditioned media from spontaneously tumor-transformed 3T3 cells (3T6-cells) or from SV-40-transformed 3T3 cells (SV-3T3 cells). The conditioned media were found to stimulate both the chromosome cycle (i.e., DNA synthesis and cell division) and the growth cycle (i.e., cellular enlargement). Furthermore, addition of conditioned media to quiescent 3T3 cells increased the activity of HMG CoA reductase--an enzyme previously proposed to exercise some control on cell proliferation in 3T3 cells (Larsson and Zetterberg: J. Cell. Physiol. 129:99-102, 1986. The increased activity of HMG CoA reductase after treatment with tumor cell conditioned media was correlated to the stimulatory effects on DNA synthesis. By treating 3T3 cells stimulated to resume proliferation by addition of conditioned media with mevinolin (a competitive inhibitor of HMG CoA reductase) the activity of HMG CoA reductase as well as the DNA synthesis and cell division were efficiently inhibited. In contrast, HMG CoA activity was not coupled to the cellular enlargement. Therefore, it is proposed that one set of factors present in tumor cell conditioned media preferentially stimulates the chromosome cycle by increasing the HMG-CoA reductase activity, whereas another set of factors is responsible for growth in cell size. Both types of factors are required for balanced growth.  相似文献   

16.
As viruses are reliant upon their host cell to serve as proper environments for their replication, many have evolved mechanisms to alter intracellular conditions to suit their own needs. For example, human cytomegalovirus induces quiescent cells to enter the cell cycle and then arrests them in late G(1), before they enter the S phase, a cell cycle compartment that is presumably favorable for viral replication. Here we show that the protein product of the human cytomegalovirus UL82 gene, pp71, can accelerate the movement of cells through the G(1) phase of the cell cycle. This activity would help infected cells reach the late G(1) arrest point sooner and thus may stimulate the infectious cycle. pp71 also induces DNA synthesis in quiescent cells, but a pp71 mutant protein that is unable to induce quiescent cells to enter the cell cycle still retains the ability to accelerate the G(1) phase. Thus, the mechanism through which pp71 accelerates G(1) cell cycle progression appears to be distinct from the one that it employs to induce quiescent cells to exit G(0) and subsequently enter the S phase.  相似文献   

17.
18.
Fibroblast growth and synthesis activities appear to be under exquisite control. This control is mediated in part by substances present in blood plasma or released by other cells. We have studied the role of peripheral blood mononuclear cells (PBM) activated with phytohemagglutinin-P (PHA) on DNA synthesis, proliferation, and the cell cycle of human diploid fibroblasts. Culture medium from activated but not from unactivated PBM cultures inhibited fibroblast DNA synthesis and growth in a dose-dependent manner. The activity, which was designated as lymphocyte factor (LF), was very potent; it inhibited 50% of the DNA synthesis and cell growth at a dilution of 1:160. It has a molecular weight between 50,000 and 100,000 daltons and it is destroyed by trypsin digestion or by heating at 80°C for 30 minutes. The activity was not due to the presence of prostaglandin. Furthermore, using immunoprecipitation and affinity chromatography, it was shown conclusively to to be distinctly different from alpha lymphotoxin (α-LT). It was not cytotoxic, as shown by the 51chromium release technique. Using flow microfluorimetry it was shown that the activity regulates fibroblast growth by preventing quiescent cells in the G0 or G1 stage of the cell cycle from entering the S phase. Cells already in S at the time of exposure complete DNA Synthesis but cannot divide, and they accumulate in G2. The activity also has marked effects on protein synthesis. Activated mononuclear cells may play a major role in regulating fibroblast growth and synthesis in normally healing wounds and in acute and chronic inflammatory processes.  相似文献   

19.
The regulation of DNA polymerase alpha was examined in quiescent, human fibroblast cells stimulated to re-enter the cell cycle by subculturing in fresh serum-containing medium. The level of DNA polymerase alpha activity was measured in cell lysates and after specific immunoprecipitation. DNA polymerase alpha activity increased approximately 10-fold during the period of measurement. The activity increase was coincident with an approximately 60-fold increase in thymidine incorporation in the whole cells representing the first S phase. The large increase in polymerase alpha activity was not predominantly the result of synthesis of new polymerase, since the abundance of the enzyme changed less than 2-fold over the measured period. The quantity of [32P]phosphate incorporated into two subunits (180 and 68 kilodaltons) of DNA polymerase alpha increased approximately 10-fold in parallel with the increase in polymerase activity. The specific activity of the cellular ATP pool remained nearly constant over the period of measurement, indicating that the increase in labeling reflects a true increase in incorporation of phosphate. Results from other laboratories indicate that phosphorylation of DNA polymerase alpha increases its catalytic activity. Our results then suggest that the activity increase observed in DNA polymerase alpha when quiescent, human fibroblasts are stimulated to proliferate is largely caused by a phosphorylation-dependent regulatory process.  相似文献   

20.
Holm RE  Key JL 《Plant physiology》1971,47(5):606-608
Rootless soybean (Glycine max) seedlings were used as a test system to examine the action of auxin on chromatin-directed RNA synthesis. Chromatin from the basal tissue of rootless seedlings (both control and auxin-treated) had RNA synthetic capacity similar to that of chromatin from comparably treated intact seedlings. When DNA synthesis normally induced in the basal tissue by auxin was blocked in the rootless seedlings by 5-fluorodeoxyuridine, the auxin enhancement of chromatin activity was inhibited 70%. This level was still three times the control level, indicating that auxin influenced the synthetic activity of existing DNA template. Experiments with Escherichia coli RNA polymerase revealed that chromatin from both auxin- and auxin plus 5-fluorodeoxyuridine-treated tissue saturated at higher levels than chromatin from control tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号