首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is a homing receptor preferentially expressed on gut-associated endothelial cells that plays a central role in leukocyte traffic into the mucosal immune compartment. Although the molecular mechanisms underlying endothelial ICAM-1 or E-selectin expression have been intensively investigated, the mechanisms that regulate human MAdCAM-1 expression have not been defined. We report MAdCAM-1 gene and protein expression in primary cultures of human intestinal microvascular endothelial cells (HIMEC) that was not demonstrated in human umbilical vein endothelial cells. Similar to ICAM-1 and E-selectin expression, MAdCAM-1 gene expression in HIMEC was inducible with TNF-, IL-1, or LPS activation. However, in striking contrast to ICAM-1 and E-selectin expression, MAdCAM-1 mRNA and protein expression in HIMEC was heavily dependent on culture duration and/or cellular density, suggesting a prominent role for cell-cell interaction among these endothelial cells in the expression of the mucosal addressin. MAdCAM-1 expression was inhibited by both SN-50 (NF-B inhibitor) and LY-294002 [phosphatidylinositol 3-kinase (PI3-K) inhibitor], whereas ICAM-1 and E-selectin expression was inhibited by SN-50 but not by LY-294002. The Akt phosphorylation by TNF- or LPS was greater at higher cell density, demonstrating a pattern similar to that of MAdCAM-1 expression. NF-B activation was not affected by cellular density in HIMEC. MAdCAM-1 expression in human gut endothelial cells is regulated by distinct signaling mechanisms involving both NF-B and PI3-K/Akt. These data also suggest that PI3-K/Akt is involved in the gut-specific differentiation of HIMEC, which results in expression of the mucosal addressin MAdCAM-1. cell adhesion molecules; nuclear factor-B; phosphatidylinositol 3-kinase  相似文献   

2.
We have previously shown that protein kinase C (PKC) and/or PKC are necessary for endothelin-1 (ET-1)-induced human myometrial contraction at the end of pregnancy (Eude I, Paris P, Cabrol D, Ferré F, and Breuiller-Fouché M. Biol Reprod 63: 1567–1573, 2000). Here, we report that the selective inhibitor of PKC isoform, Rottlerin, does not prevent ET-1-induced contractions, whereas LY-294002, a phosphatidylinositol (PI) 3-kinase inhibitor, affects the contractile response. This study characterized the in vitro contractile response of cultured human pregnant myometrial cells to ET-1 known to induce in vitro contractions of intact uterine smooth muscle strips. Cultured myometrial cells incorporated into collagen lattices have the capacity to reduce the size of these lattices, referred to as lattice contraction. Neither the selective conventional PKC isoform inhibitor, Gö-6976, or rottlerin affected myometrial cell-mediated gel contraction by ET-1, whereas this effect was blocked by LY-294002. We found that treatment of myometrial cell lattices with an inhibitory peptide specific for PKC or with an antisense against PKC resulted in a significant loss of ET-1-induced contraction. Evidence is also presented by using confocal microscopy that ET-1 induced translocation of PKC to a structure coincident with the actin-rich microfilaments of the cytoskeleton. We have shown that PKC has a role in the actin organization in ET-1-stimulated cells. Accordingly, our results suggest that PKC plays a role in myometrial contraction in pregnant women. protein kinase C; uterine smooth muscle; parturition  相似文献   

3.
The mechanisms by which lipopolysaccharide (LPS) is recognized, and how such recognition leads to innate immune responses, are poorly understood. Stimulation with LPS induces the activation of a variety of proteins, including mitogen-activated protein kinases (MAPKs) and NF-B. Activation of protein tyrosine kinases (PTKs) is also necessary for a number of biological responses to LPS. We used a murine macrophage-like cell line, RAW264.7, to demonstrate that Janus kinase (JAK)2 is tyrosine phosphorylated immediately after LPS stimulation. Anti-Toll-like receptor (TLR)4 neutralization antibody inhibits the phosphorylation of JAK2 and the c-Jun NH2-terminal protein kinase (JNK). Both the JAK inhibitor AG490 and the kinase-deficient JAK2 protein reduce the phosphorylation of JNK and phosphatidylinositol 3-kinase (PI3K) via LPS stimulation. Pharmacological inhibition of the kinase activity of PI3K with LY-294002 decreases the phosphorylation of JNK. Finally, we show that JAK2 is involved in the production of IL-1 and IL-6. PI3K and JNK are also important for the production of IL-1. These results suggest that LPS induces tyrosine phosphorylation of JAK2 via TLR4 and that JAK2 regulates phosphorylation of JNK mainly through activation of PI3K. Phosphorylation of JAK2 via LPS stimulation is important for the production of IL-1 via the PI3K/JNK cascade. Thus JAK2 plays a pivotal role in LPS-induced signaling in macrophages. cytokine; toll-like receptor-4; c-Jun NH2-terminal kinase  相似文献   

4.
Estrogen increasessecretion of cervical mucus in women, and the effect depends onfragmentation of the cytoskeleton. The objective of the present studywas to understand the molecular mechanism of estrogen action. Treatmentof human cervical epithelial cells with 17-estradiol, sodiumnitroprusside (SNP), or 8-bromoguanosine 3',5'-cyclic monophosphate(8-Br-cGMP) increased cellular monomeric G-actin and decreasedpolymerized F-actin. The effects of estradiol were blocked bytamoxifen, by the guanylate cyclase inhibitor LY-83583, and by thecGMP-dependent protein kinase inhibitor KT-5823. The effects of SNPwere blocked by LY-83583 and KT-5823, while the effects of 8-Br-cGMPwere blocked only by KT-5823. Treatment with phalloidin decreasedparacellular permeability and G-actin. Treatment with 17-estradiol,SNP, or 8-Br-cGMP attenuated SNP-induced phosphorylation of[32P]adenylate NAD in vitro: tamoxifen blocked the effectof estrogen; LY-83583 blocked the effect of SNP but not that of8-Br-cGMP, while KT-5823 blocked effects of both SNP and 8-Br-cGMP.These results indicate that estrogen, nitric oxide (NO), and cGMPstimulate actin depolymerization. A possible mechanism is NO-induced,cGMP-dependent protein kinase augmentation of ADP-ribosylation ofmonomeric actin.

  相似文献   

5.
Trauma-hemorrhage and resuscitation (TH) produces profound immunodepression and enhances susceptibility to sepsis in males but not in proestrus females, suggesting gender dimorphism in the immune responses. However, the mechanism responsible for the maintenance of immune functions in proestrus females after TH is unclear. Splenic T lymphocytes express receptors for estrogen (ER), contain enzymes involved in estrogen metabolism, and are the major source of cytokine production; the metabolism of 17-estradiol was assessed in the splenic T lymphocytes of proestrus and ovariectomized mice by using appropriate substrates after TH. Analysis for aromatase and 17-hydroxysteroid dehydrogenases indicated increased 17-estradiol synthesis and low conversion into estrone in T lymphocytes of proestrus but not of ovariectomized mice. The effect of 17-estradiol on T lymphocyte cytokine release was reliant on ER expressions. This was apparent in the differences of ER expression, especially that of ER-, and an association between increased 17-estradiol synthesis and sustained release of IL-2 and IL-6 in T lymphocytes of proestrus females after TH. Because 17-estradiol is able to regulate cytokine genes, and the splenic T lymphocyte cytokine releases is altered after TH, continued synthesis of 17-estradiol in proestrus females appears to be responsible for the maintenance of T lymphocyte cytokine release associated with the protection of immune functions after TH. inflammation; immune suppression; steroid synthesis; T lymphocytes; cytokines  相似文献   

6.
Although both estrogen and caveolin have been implicated in many physiological functions, their precise relationship is not completely understood in mouse embryonic stem (ES) cells. Thus, this study was designed to examine the relationship between estradiol-17beta (E(2)) and caveolin-1 in mouse ES cell proliferation. E(2) increased the expression of caveolin-1 and caveolin-2 mRNA and proteins, but pre-treatment with ICI 182,780 [an estrogen receptor (ER) antagonist] inhibited E(2)-induced increase in caveolin-1 and caveolin-2 proteins expression. E(2) also increased phosphorylated levels of caveolin-1, Src, and Akt. Phospho-caveolin-1 was significantly blocked by ICI 182,780 or pyrazolopyrimidine 2 (PP2; a Src-kinase inhibitor). LY 294002 (a PI3K inhibitor) or PD 98059 (an ERK1/2 inhibitor) prevented E(2)-induced increase in caveolin-1 expression and the accompanying [(3)H]-thymidine incorporation. Furthermore, inhibition of caveolin-1 expression using a caveolin-1 siRNA significantly attenuated E(2)-induced up-regulation of proto-oncogenes, cell cycle regulatory proteins, [(3)H]-thymidine incorporation, overall cell number, and percent of the cell population in S phase, while mediating a concomitant increase in the G0/G1 population. In conclusion, E(2) stimulates mouse ES cell proliferation partially through up-regulating caveolin-1 via the Src, PI3K/Akt, ERK1/2 signaling pathways.  相似文献   

7.
We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IB kinase (IKK)/nuclear factor-B (NF-B) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of 51 integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C- inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca2+ pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca2+ concentration ([Ca2+]i) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca2+]i rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC- activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC--PKC-IKK-NF-B signaling cascade. Another crucial factor, [Ca2+]i increase, may at least be required to activate PKC needed for NF-B activation. nuclear factor-B; phosphatidylinositol 3-kinase; phospholipase C-; protein kinase C; intracellular Ca2+ concentration  相似文献   

8.
《Developmental neurobiology》2017,77(10):1133-1143
Thousands of people each year suffer from peripheral nerve injury. Treatment options are limited, and recovery is often incomplete. Treadmill exercise can enhance nerve regeneration; however, this appears to occur in a sex‐dependent manner. Females respond best to short duration, high speed interval training; whereas, males respond best to slower, continuous training. Previous studies have shown a role for testosterone in this process, but the role of estrogen is unknown. To evaluate the role of estrogen signaling in treadmill exercise, we blocked estrogen receptor (ER) signaling during treadmill exercise in males and female wild type mice. The right common fibular (CF) branch of the sciatic nerve was cut and repaired with fibrin glue that contained the ER antagonist ICI 182,780. Estradiol‐filled or blank Silastic capsules were implanted subcutaneously at the time of nerve transection. Starting three days post‐transection, exercised mice received treadmill training using the paradigm appropriate to their sex 5 days a week for 2 weeks. Fourteen days after the initial nerve transection, motoneurons whose axons had regenerated at least 1.5 mm distal to the original cut sites were labeled with a retrograde tracer. Regeneration was quantified by counting the number of fluorescent labeled motoneurons in the lumbar region of the spinal cord. Both treadmill training and estradiol administration increased the number of motoneurons participating in axon regeneration, but these effects were blocked by ER antagonist treatment. Estrogen signaling is important for the enhancing effects of treadmill exercise on motoneuron participation after peripheral nerve cut. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1133–1143, 2017  相似文献   

9.
-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with -dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the -subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain G-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, - and -dystroglycan, or dystrophin precipitate a complex with G from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of G binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gs and G occurs and active Gs, measured as GTP-35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gs is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-S-bound) Gs, and the Ca2+ channel is inhibited by laminin-1. The laminin 1-chain globular domains 4 and 5 region, the region bound by DGC -dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to -dystroglycan inhibits G binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. Duchenne muscular dystrophy; protein G -subunit; pleckstrin homology domain  相似文献   

10.
Changes in the synthesis and activity of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are associated with myocardial remodeling. Here we measured the expression and activity of MMPs and TIMPs, and tested the hypothesis that increased MMP activity plays a proapoptotic role in -adrenergic receptor (-AR)-stimulated apoptosis of adult rat ventricular myocytes (ARVMs). -AR stimulation (isoproterenol, 24 h) increased mRNA levels of MMP-2 and TIMP-1 while it decreased TIMP-2 mRNA levels as analyzed by real-time PCR. Western blot analysis, immunocytochemical analysis, in-gel zymography, and MMP-2 activity assay confirmed -AR-stimulated increases in MMP-2 protein levels and activity. Inhibition of MMPs using GM-6001 (a broad-spectrum inhibitor of MMPs), SB3CT (inhibitor of MMP-2), and purified TIMP-2 inhibited -AR-stimulated apoptosis as determined by TdT-mediated dUTP nick end labeling staining. Treatment with active MMP-2 alone increased the number of apoptotic cells. This increase in MMP-2-mediated apoptosis was inhibited by GM-6001 and SB3CT pretreatment. Coimmunoprecipitation studies indicated increased physical association of MMP-2 with 1-integrins after -AR stimulation. Inhibition of MMP-2 using SB3CT or stimulation of 1-integrin signaling using laminin inhibited the increased association of MMP-2 with 1-integrins. -AR stimulation increased poly-ADP-ribose-polymerase cleavage, which was inhibited by inhibition of MMP-2. These data suggest the following: 1) -AR stimulation increases MMP-2 expression and activity and inhibits TIMP-2 expression; 2) inhibition of MMPs, most likely MMP-2, inhibits -AR-stimulated apoptosis; and 3) the apoptotic effects of MMP-2 may be mediated, at least in part, via its interaction with 1 integrins and poly-ADP-ribose-polymerase cleavage. integrins; poly-ADP-ribose-polymerase  相似文献   

11.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

12.
AND-34, a 95-kDa protein with modest homology to Ras GDP exchange factors, associates with the focal adhesion protein p130Cas. Overexpression of AND-34 confers anti-estrogen resistance in breast cancer cell lines, a property linked to its ability to activate Rac. Here, we show that both the GDP exchange factor-like domain and the SH2 domain of AND-34 are required for Rac activation and for resistance to the estrogen receptor (ER) antagonist ICI 182,780. As phosphatidylinositol 3-kinase (PI3K) signaling can regulate Rac activation, we examined the effects of AND-34 on PI3K. Overexpression of AND-34 in MCF-7 cells increased PI3K activity and augmented Akt Ser(473) phosphorylation and kinase activity. Inhibition of PI3K with LY294002 or a dominant-negative p85 construct blocked AND-34-mediated Rac and Akt activation. Although R-Ras can activate PI3K, transfection with constitutively active R-Ras failed to induce Rac activation and AND-34 overexpression failed to induce R-Ras activation. Treatment of either vector-only or AND-34-transfected ZR-75-1 cells with ICI 182,780 markedly diminished ERalpha levels, suggesting that AND-34-induced anti-estrogen resistance is likely to occur by an ERalpha-independent mechanism. Treatment of a ZR-75-1 breast cancer cell line stably transfected with AND-34 plus 2 micromol/L LY294002 or 10 micromol/L NSC23766, a Rac-specific inhibitor, abrogated AND-34-induced resistance to ICI 182,780. Our studies suggest that AND-34-mediated PI3K activation induces Rac activation and anti-estrogen resistance in human breast cancer cell lines.  相似文献   

13.
Activation of PLC-delta1 by Gi/o-coupled receptor agonists   总被引:1,自引:0,他引:1  
The mechanism of phospholipase (PLC)- activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca2+ stimulated an eightfold increase in PLC-1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three Gi/o-coupled receptor agonists (somatostatin, -opioid agonist [D-Pen2,D-Pen5]enkephalin, and A1 agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-1(E341R/D343R; 65–76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca2+ influx and was not observed in the absence of extracellular Ca2+, but was partly inhibited by nifedipine (16–30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca2+ channels. Treatment of the cells with a Gq/13-coupled receptor agonist, CCK-8, caused only transient, PLC-1-mediated PI hydrolysis. Unlike Gi/o-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or G13 minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca2+ influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine (25%) and strongly inhibited by SKF-96365 (75%) and in cells expressing PLC-1(E341R/D343R). Agonist-independent Ca2+ release or Ca2+ influx via voltage-gated Ca2+ channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-1 antibody or nifedipine. We conclude that PLC-1 is activated by Gi/o-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca2+ influx via store-operated Ca2+ channels. phospholipase C; G protein  相似文献   

14.
Vaculová A  Hofmanová J  Soucek K  Kozubík A 《FEBS letters》2006,580(28-29):6565-6569
Epithelial cells can be manipulated to undergo apoptosis depending on the balance between pro-survival and apoptotic signals. We showed that TRAIL-induced apoptosis may be differentially regulated by inhibitors of MEK ERK (U0126) or PI3K/Akt (LY294002) pathway in TRAIL-sensitive (HT-29) and TRAIL-resistant (SW620) human epithelial colon cancer cells. U0126 or LY294002 significantly enhanced TRAIL-induced apoptosis in HT-29 cells, but not in SW620 cells. We report a different regulation of the level of an anti-apoptotic Mcl-1 protein under MEK/ERK or PI3K/Akt pathway inhibition and suggest the mechanisms involved. A special attention was paid to the role of the ERK1/2, Akt, and glycogen synthase kinase 3beta.  相似文献   

15.
Maintenance of bone structural integrity depends in part on the rate of apoptosis of bone-forming osteoblasts. Because substrate adhesion is an important regulator of apoptosis, we have investigated the role of focal adhesions in regulating bone cell apoptosis. To test this, we expressed a truncated form of -actinin (ROD-GFP) that competitively displaces endogenous -actinin from focal adhesions, thus disrupting focal adhesions. Immunofluorescence and morphometric analysis of vinculin and tyrosine phosphorylation revealed that ROD-GFP expression dramatically disrupted focal adhesion organization and reduced tyrosine phosphorylation at focal adhesions. In addition, Bcl-2 protein levels were reduced in ROD-GFP-expressing cells, but caspase 3 cleavage, poly(ADP-ribose) polymerase cleavage, histone H2A.X phosphorylation, and cytotoxicity were not increased due to ROD-GFP expression alone. Increases in both ERK and Akt phosphorylation were also observed in ROD-GFP-expressing cells, although inhibition of either ERK or Akt individually or together failed to induce apoptosis. However, we did find that ROD-GFP expression sensitized, whereas -actinin-GFP expression protected, cells from TNF--induced apoptosis. Further investigation revealed that activation of TNF--induced survival signals, specifically Akt phosphorylation and NF-B activation, was inhibited in ROD-GFP-expressing cells. The reduced expression of antiapoptotic Bcl-2 and inhibited survival signaling rendered ROD-GFP-expressing cells more susceptible to TNF--induced apoptosis. Thus we conclude that -actinin plays a role in regulating cell survival through stabilization of focal adhesions and regulation of TNF--induced survival signaling. tumor necrosis factor-; survival; cytoskeleton; nuclear factor-B  相似文献   

16.
Although 17-estradiol (E2) administration following trauma-hemorrhage prevents the suppression in splenocyte cytokine production, it remains unknown whether the salutary effects of 17-estradiol are mediated via estrogen receptor (ER)- or ER-. Moreover, it is unknown which signaling pathways are involved in 17-estradiol's salutary effects. Utilizing an ER-- or ER--specific agonist, we examined the role of ER- and ER- in E2-mediated restoration of T-cell cytokine production following trauma-hemorrhage. Moreover, since MAPK, NF-B, and activator protein (AP)-1 are known to regulate T-cell cytokine production, we also examined the activation of MAPK, NF-B, and AP-1. Male rats underwent trauma-hemorrhage (mean arterial pressure 40 mmHg for 90 min) and fluid resuscitation. ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic T cells were isolated, and their IL-2 and IFN- production and MAPK, NF-B, and AP-1 activation were measured. T-cell IL-2 and IFN- production was decreased following trauma-hemorrhage, and this was accompanied with a decrease in T-cell MAPK, NF-B, and AP-1 activation. PPT or 17-estradiol administration following trauma-hemorrhage normalized those parameters, while DPN administration had no effect. Since PPT, but not DPN, administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the T-cell suppression, it appears that ER- plays a predominant role in mediating the salutary effects of 17-estradiol on T cells following trauma-hemorrhage, and that such effects are likely mediated via normalization of MAPK, NF-B, and AP-1 signaling pathways. shock; MAPK; NF-B; activator protein-1; propyl pyrazole triol; diarylpropionitrile  相似文献   

17.
Platelets transform from disks to irregular spheres, grow filopodia, form ruffles, and spread on surfaces coated with anti-FcRIIA antibody. FcRIIA cross-linking leads to a tenfold increase in actin filament barbed end exposure and robust actin assembly. Activation of the small GTPases Rac and Cdc42 follows FcRIIA cross-linking. Shape change, actin filament barbed end exposure, and quantifiable actin assembly require phosphoinositide 3-kinase (PI3-kinase) activity and a rise in intracellular calcium. PI3-kinase inhibition blocks activation of Rac, but not of Cdc42, and diminishes the association of Arp2/3 complex and CapZ with polymerized actin. Furthermore, addition of constitutively active D-3 phosphorylated polyphosphoinositides or recombinant PI3-kinase subunits to octylglucoside-permeabilized platelets elicits actin filament barbed end exposure by releasing gelsolin and CapZ from the cytoskeleton. Our findings place PI3-kinase activity upstream of Rac, gelsolin, and Arp2/3 complex activation induced by FcRIIA and clearly distinguish the FcRIIA signaling pathway to actin filament assembly from the thrombin receptor protease-activated receptor (PAR)-1 pathway. actin assembly; CD32A  相似文献   

18.
Although 17-estradiol administration following trauma-hemorrhage prevents the suppression in splenic macrophage cytokine production, it remains unknown whether the salutary effects are mediated via estrogen receptor (ER)- or ER- and which signaling pathways are involved in such 17-estradiol effects. Utilizing ER-- or ER--specific agonists, this study examined the role of ER- and ER- in 17-estradiol-mediated restoration of macrophage cytokine production following trauma-hemorrhage. In addition, since MAPK and NF-B are known to regulate macrophage cytokine production, we also examined the activation of those signaling molecules. Male rats underwent trauma-hemorrhage (mean arterial pressure of 40 mmHg for 90 min) and fluid resuscitation. The ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), the ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic macrophages were isolated, and their IL-6 and TNF- production and activation of MAPK and NF-B were measured. Macrophage IL-6 and TNF- production and MAPK activation were decreased, whereas NF-B activity was increased, following trauma-hemorrhage. PPT or 17-estradiol administration after trauma-hemorrhage normalized those parameters. DPN administration, on the other hand, did not normalize the above parameters. Since PPT but not DPN administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the suppression in macrophage cytokine production, it appears that ER- plays the predominant role in mediating the salutary effects of 17-estradiol on macrophage cytokine production following trauma-hemorrhage and that such effects are likely mediated via normalization of MAPK but not NF-B signaling pathways. shock; mitogen-activated protein kinase; nuclear factor-B; propyl pyrazole triol; diarylpropionitrile  相似文献   

19.

Background

Animal and organ culture experiments have shown beneficial inhibitory estrogen effects on post injury neointima development. The purpose of this study was to investigate whether such estrogen effects are influenced by the estrogen receptor antagonist ICI 182,780. Different concentrations of 17β-estradiol and the phytoestrogens genistein and daidzein were tested.

Methods

F emale New Zealand White rabbits were benumbed. In situ vascular injury of the thoracic and abdominal aorta was performed by a 3F Fogarty catheter. Segments of 5 mm were randomised and held in culture for 21 days. Three test series were performed: 1) control group – 20 μM ICI – 30 μM ICI – 40 μM ICI. 2) control group – 20 μM ICI – 40 μM 17β-estradiol – 40 μM 17β-estradiol + 20 μM ICI. 3) control group – 20 μM ICI – 40 μM daidzein – 40 μM daidzein + 20 μM ICI – 20 μM genistein – 20 μM genistein + 20 μM ICI. After 21 days the neointima-media-ratio was evaluated.

Results

1) Treatment with ICI 182,780 did not reduce neointima formation significantly (p = 0.05). 2) 40 μM 17β-estradiol alone (p < 0.0001) and in combination with 20 μM ICI (p < 0.0001) reduced neointima formation significantly. 3) 20 μM genistein alone (p = 0.0083) and combined with 20 μM ICI (p = 0.0053) reduced neointima formation significantly. 40 μM daidzein did not have a significant (p = 0.0637) effect.

Conclusions

The estrogen receptor antagonist ICI 182,780 did not modulate the inhibitory estrogen effects on post injury neointima formation. These results do not support the idea that such effects are mediated by vascular estrogen receptors.  相似文献   

20.
Neutrophil apoptosis is delayed under trauma and/or sepsis injury conditions. The molecular mechanism for the delay in apoptosis has not been well defined. We investigated whether activation of phosphatidyl inositol 3-kinase (PI3-kinase)/PKB signaling pathway contributes to the delay in neutrophil apoptosis with thermal injury. Rats were subjected to burns (30% total body surface area, 98°C for 10 s), and euthanized 24 h later. Blood neutrophils were isolated with the use of Ficoll gradient centrifugation and cultured for the indicated time periods. Apoptosis was determined using annexin V and PI labeling and flow cytometry. NF-B activation was examined using gel mobility shift assay and confocal microscopy. Expression levels of inhibitory apoptosis proteins (IAPs), including cellular IAP1 (cIAP1), cIAP2, X-linked IAP (XIAP), and survivin, and Bcl-2 family members such as Bcl-xl and Bad, were determined by Western blot analysis and/or RT-PCR, real-time PCR. The results showed that in culture, the decrease in apoptosis of neutrophils from thermally injured rats was prevented in the presence of PI3-kinase inhibitors wortmannin and LY-294002. There was upregulation of PKB and Bad phosphorylation and NF-B activation in N-formyl-L-methionyl-L-leucyl-L-phenylalanine-stimulated neutrophils from thermally injured rats compared with the sham injured group. Increased Bad phosphorylation and NF-B activation were also attenuated by wortmannin. Bcl-xl expression in neutrophils was upregulated with thermal injury and inhibited in the presence of wortmannin. However, the expression of IAP family members was neither affected by thermal injury nor inhibited by wortmannin. These data suggest that the delay in neutrophil apoptosis with thermal injury is partly caused by activation of PI3-kinase/PKB signaling and NF-B, which appeared to be related to the increased Bcl-xl expression and phosphorylation of Bad, but not IAP expression. polymorphonuclear neutrophils; nuclear factor-B; Bcl-xl; Bad; inhibitory apoptosis protein; burn injury  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号