首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isoleucine acceptance of tRNA from Escherichia coli C6 was previously shown to be influenced by the synthetase level (Marashi, F. and Harris, C.L. 1977. Biochim. Biophys. Acta 477, 84-88). We show here that the increased acceptance observed at higher enzyme levels is accompanied by an increase in the aminoacylation of one tRNAile species. Hence, tRNAile, a minor species at low enzyme levels, is a major isoacceptor after full aminoacylation. The two major isoleucine species have been purified using a combination of BD-cellulose, DEAE-Sephadex A-50 and methylated albumin kieselguhr chromatography. tRNAile (1511 pmoles ile/A260 of tRNA) was found to be slowly acylated, with 2a Vmax one-seventh that observed with tRNAil3le (1475 pmoles ile/A260). Two-dimensional TLC analysis of RNase T2 digests revealed differences in nucleotide content between the purified tRNAs. These results are discussed in terms of the presence of slow and fast tRNAile species in E. coli.  相似文献   

2.
A difference in isoleucine acceptance between normal and sulfur-deficient tRNA from Escherichia coli C6 (rel-, met-, cys-) was eliminated when more isoleucyl-tRNA synthetase was added at the reaction plateau. Enzymatic deacylation was similar for both tRNAs. These results suggest that enzyme inactivation caused a premature reaction plateau which was not predicted by the rates of acylation and deacylation.  相似文献   

3.
Transfer RNA from Escherichia coli C6, a Met-, Cys-, relA- mutant, was previously shown to contain an altered tRNA(Ile) which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676-7683). We now report the purification of this altered tRNA(Ile) and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNA(Ile) purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNA(Ile) (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl approximately AMP.Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNA(Ile) bound more efficiently to its synthetase compared to normal tRNA(Ile). Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNA(Ile) contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNA(Ile) contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNA(Ile) without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNA(Ile) has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNA(Ile) from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNA(Ile) for aminoacylation is discussed.  相似文献   

4.
T2, T4, and T6 bacteriophage tRNAs coding for arginine, leucine, proline, isoleucine, and glycine were isolated under conditions of short term and long term infection of Escherichia coli B cells. The corresponding phage tRNA species were examined for sequence homology by RNA-DNA hybridization analysis and by their relative behavior on reversed phase chromatography. The results indicate that all three T-even phages code for similar tRNA species; however, some tRNA species are homologous, others are not, and not all of the same tRNA species are coded by each bacteriophage. Reversed phase chromatography showed the presence of isoacceptor tRNAs for each phage aminoacyl-tRNA species. Pulse-chase experiments for [32P]tRNAGly suggest that the multiple isoacceptor species observed derive from the intracellular modification of a single tRNAGly gene product.  相似文献   

5.
Examination of the transfer ribonucleic acid (tRNA) produced by starving, relaxed-control (rel minus) strains of Escherichia coli for required amino acids revealed the occurrence of a number of chromatographically unique subspecies. Leucine starvation results in the formation of new isoacceptor species of leucine-, histidine-, arginine-, valine-, and phenylalanine-specific tRNA and quantitative changes in the column profiles of serine, glycine, and isoleucine tRNA. Evidence that the unique tRNA species are synthesized de novo during amino acid starvation comes from the findings that the major unique leucine isoacceptor species is not formed in stringent control cells or in rel minus cells starved for uracil or treated with rifampin. Furthermore, heat treatment of the unique leucine tRNA does not alter its chromatographic behavior, indicating that the species is not an aggregate or nuclease-damaged form of a normal isoacceptor tRNA. The methyl acceptor activities of tRNA from leucine-starved and nonstarved rel+ or rel minus cells were found to be essentially the same. This result and the finding that the chromatographic behavior of the unique leucine-specific tRNA was not altered after treatment with tRNA methylase suggests that gross methyl deficiency is probably not the biochemical basis for the occurrence of the unique species.  相似文献   

6.
T5 bacteriophage codes for the synthesis of more than 14 different tRNA species, which map in four separate clusters in the C segment of the T5 chromosome. In this study, two tRNAile isoacceptor species have been identified by reverse-phase chromatography and shown to be transcribed from two different tRNA loci along the T5 chromosome. The map positions of the tRNA isoacceptors were aided by the use of several T5 deletion mutants in which the position and size of the deleted DNA segments had been previously determined by heteroduplex mapping. Hybridization analysis suggests the presence of some sequence homology between the two tRNAile species.  相似文献   

7.
The chromatographic elution profiles of 15 aminoacyl tRNA's from dependent and independent mammary tumors of GR mice have been studied using the reversed phase chromatography (RPC 5). The seryl tRNA from the dependent tumor displayed three isoacceptor peaks while only two isoacceptor peaks were observed in the case of the independent tumor when the tRNA's were charged in the presence of the GR mice liver enzyme. Charging of the tRNA's with radioactive leucine by homologous and heterologous enzyme revealed major differences in the leucyl isoacceptor species. The homologous dependent tumor system charges five leucyl tRNA species while the independent system only charges four. The leucyl tRNA from the dependent tumor has a new peak which is only recognized by its own enzyme, but this peak is either suppressed or completely absent in the independent tumor.  相似文献   

8.
A cysteine-requiring mutant of the parent strain Escherichia coli Hfr Cavalli (RC(rel), Met(-), lambda) has been isolated. The mutant was selected by using replica plating after mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine. The mutation appears to be in the gene for sulfite reductase, since the mutant could utilize sulfide but not sulfite as a sulfur source. The mutant was found to be RC(rel) with respect to both methionine and cysteine. During cysteine starvation, transfer ribonucleic acid (tRNA) deficient in 4-thiouracil was produced, and in vivo studies indicate that this tRNA can accept sulfur groups to a greater extent than normal tRNA. Further, there were differences both in the rate and extent of amino acid acceptance between normal and sulfur-deficient tRNA. This suggests that thionucleotides are involved in at least one of the biological functions of the tRNA molecule.  相似文献   

9.
Transfer RNAs have been prepared from control and regenerating rat skeletal muscle. The yield of tRNA is highest during the early stages of the regeneration process (5 and 8 days following the induction of regeneration) and decreases to near control values thereafter. The amino acid acceptor activity (extent of aminoacylation) of tRNA from regenerating muscle was also found to be higher for some amino acids than the activity of control tRNA, and the maximum increase in activity was observed between 5 and 8 days following the initiation of regeneration with a decrease to control levels through 15 and 30 days. The isoacceptor pattern, determined by RPC-5 chromatography, for methionyl-tRNAs from control muscle and 5-day regenerating muscle were essentially indistinguishable, while a minor peak of prolyl-tRNA was observed in the population from 5-, 8- and 15-day regenerates which was apparently absent from the control tRNA. Lysyl-tRNAs from control muscle contain two major isoacceptors while a third isoacceptor is observed in the tRNA preparations from 5-, 8- and 15-day regenerating muscle. The relative amount of this third isoacceptor is highest in the 8-day population and decreases in amount in tRNAs from 15- and 30-day regenerates. Control muscle also contains two major glutamyl-tRNA species while a third isoacceptor can be detected in regenerates. The relative amount of this species increases during the early course of the regeneration process but is present at near control levels by 30 days following Marcaine injection. Cell-free protein synthesis using muscle polyribosomes showed that tRNAs from regenerating muscle were more effective in stimulating [35S]methionine incorporation than tRNAs from control muscle.  相似文献   

10.
An extreme codon preference strategy: codon reassignment   总被引:8,自引:1,他引:7  
We argue that in animal mitochondria codon reassignments, such as those for AGA and AGG from arginine to serine or of AUA from isoleucine to methionine, are the result of an interplay between biased mutational forces and selective ones. In particular, there is a marked tendency for animal mitochondria to have very small genomes and to minimize their investment in components required for gene expression. These tendencies are expressed as a reduction in the diversity of tRNA isoacceptor species. In our view, the pressure to simplify tRNA populations, together with mutational bias against certain codons, will account for the codon reassignments observed in animal mitochondria. A parallel to the major codon bias in microorganisms, which likewise tends to reduce the diversity of the tRNA isoacceptor populations under fast growth conditions, may be drawn. Therefore, we suggest that codon reassignments are usefully viewed as an extreme form of codon bias.  相似文献   

11.
tRNAile was isolated from E. coli Cp 79 (leu-, arg-, thr-, his-, thiamin-, RCrel) which had been grown on a sub-optimal concentration of thr and was found to contain an average of 50% less N-[9-(beta-D-ribofuranosyl)- purin-6-ylcarbamoyl]threonine, t6Ado, than tRNAile from cells grown on an optimum concentration of thr and containing a normal complement of t6Ado. The two tRNA's were identical in their ability to be aminoacylated, to accept the 3'-terminal dinucleotide, and to form an ile-tRNAile-Tu-GTP complex. In contrast, the t6Ado-deficient-tRNA was significantly less efficient in binding to ribosomes compared to the normal tRNA. This difference was seen in the binding of deacylated tRNA and in the nonenzymatic and enzymatic binding of ile-tRNA, all in response to poly AUC. The t6Ado-deficient ile-tRNA demonstrated no binding at Mg2+ concentrations less than or equal to 10 mM, while the normal ile-tRNA bound at low Mg2+ concentrations. Tetracycline had the same effect on the normal as on the t6Ado-deficient ile-tRNA binding. As a control, the binding of phe-tRNA (which does not contain t6Ado) from normal and thr-starved cells in response to poly U was identical. It was concluded that t6Ado is required for proper codon-anticodon interaction.  相似文献   

12.
Transfer RNA isolated from lymphocytes stimulated by concanavalin A and that from resting cells were compared with respect to amino-acid acceptance, integrity of the CCA-terminus, extent of modification and isoacceptor distribution. Following growth stimulation the overall amino-acid acceptance of the tRNA is elevated, in particular the relative acceptor activities for threonine and arginine are increased. The reduced acceptor activity of the tRNA from the quiescent cells is not due to a preferential degradation of the CCA-end, since it persists even in the presence of ATP(CTP):tRNA nucleotidyltransferase. We therefore conclude that this reduced activity is caused by structural differences of the tRNAs. The content of modified nucleotides in newly synthesized tRNA from lymphocytes cultured in the presence and absence of concanavalin A was determined. tRNA from resting cells was found to be undermodified with respect to pseudouridine and dihydrouridine. Upon monitoring the tRNA isoacceptor distribution by affinity chromatography on immobilized elongation factor Tu and subsequent two-dimensional gel electrophoresis, a preferential synthesis of particular lysine- and threonine-accepting tRNAs was observed upon mitogenic stimulation. Evidently, a specific tRNA population is needed by the proliferating cells. These results are discussed in view of the hypothesis that the commitment of lymphocytes to proliferation is at least in part under translational control.  相似文献   

13.
The chromatographic profiles of isoaccepting tRNAs were analyzed at five time points during the 96 hr, dimethylsulfoxide induced, erythroid-like differentiation of Friend leukemia cells. Sixty-four isoaccepting species of tRNA for 16 amino acids were resolved by RPC-5 chromatography. The relative amounts of tRNAphe, tRNAile, and tRNAval species were maintained by the cells during differentiation; whereas the relative amounts of some of the isoacceptor tRNAs for the other 13 amino acids changed significantly. Fluctuations in amounts of isoacceptors occurred between 36 and 72 hr after addition of dimethysulfoxide, corresponding to globin mRNA appearance and hemoglobin synthesis, respectively. In most cases, thepredominant tRNA isoacceptors of uninduced cells were retained throughout differentiation. Notable exceptions were tRNA species for threonine, proline, and methionine. Some of the isoacceptors occurring in relatively smaller amounts were not expressed at all times. These changes possibly reflect the cell's functional adaptation of tRNA in differentiation for hemoglobin synthesis.  相似文献   

14.
Transfer RNA from Escherichia coli C6, a Met, Cys, relA mutant, was previously shown to contain an altered tRNAIle which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676–7683). We now report the purification of this altered tRNAIle and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNAIle purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNAIle (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl ∼ AMP · Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNAIle bound more efficiently to its synthetase compared to normal tRNAIle. Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNAIle contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNAIle contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNAIle without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNAIle has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNAIle from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNAIle for aminoacylation is discussed.  相似文献   

15.
Valyl-, isoleucyl-, and leucyl-tRNA synthetase activities were examined in an Escherichia coli K-12 strain that possessed a deletion of three genes of the ilv gene cluster, ilvD, A, and C, and in a strain with the same deletion that also carried the lambdadilvCB bacteriophage. It was observed that the branched-chain tRNA synthetase activities of both strains were considerably less than those of the normal strain during growth in unrestricted medium. Furthermore, during an isoleucine limitation, there was a further reduction in isoleucyl-tRNA synthetase activity and an absence of the isoleucine-mediated derepression of valyl-tRNA synthetase formation in both of these mutants, as compared with the normal strain. In addition, it was observed that these branched-chain synthetase activities were reduced in steady-state cultures of several ilvA point mutants. However, upon the introduction of the ilv operon to these ilvA mutants by use of lambda bacteriophage, there was a specific increase in the branched-chain synthetase activities to levels comparable to those of the normal strain. These results support our previous findings that the stability and repression control of synthesis of these synthetases require some product(s) missing in the ilvDAC deletion strain and strongly suggest this component is some form of the ilvA gene product, threonine deaminase.  相似文献   

16.
Y Komine  H Inokuchi 《FEBS letters》1990,272(1-2):55-57
The tRNA(Thr2) isoacceptor of E. coli has a G-A mismatch at positions 27-43. When the anticodon of this tRNA was converted to an amber anticodon (CUA), this tRNA showed suppressor activity in E. coli. Moreover, introduction of the base pair (G-C or U-A) at positions 27-43 of this suppressor tRNA reduced its suppressor activity. These results indicate that the G27-A43 mismatch is necessary for full function of tRNA(Thr2).  相似文献   

17.
The two principal tRNA Lys isoaccepting species of Bacillus subtilis were compared in their functional activity in translating rabbit globin. Although neither species demonstrates any preference in reading either of the lysine codons, there is an overall preference for tRNa Lys 3 in lysine incorporation. The ratios of lysine incorporated by the two species into the different lysine-containing sites in the globin subunits vary over a more than two-fold range. As described in the accompanying paper, tRNA Lys 1 is a hypomodified form of tRNA Lys 3. Consistent with studies on other rRNA species, the fully modified isoacceptor functions preferentially. In contrast to these results, however, the fully modified isoacceptor (tRNA Lys 3) is found predominantly in rapidly dividing cells while the hypomodified isoacceptor (tRNA Lys 1) predominates in the stationary cells and spores of B.l subtilis.  相似文献   

18.
During germination of lupin seeds, the levels of in-vivo tRNA aminoacylation increase in different ways, depending on the species of tRNA. Column chromatography of tRNA on reverse-phase-chromatography (RPC-5) has shown the presence of 4 peaks of isoleucyl-tRNA, 5 of leucyl-tRNA, 5 of lysyl-tRNA, 2 of tyrosyl-tRNA, and 4 of valyl-tRNA. Cochromatography of periodate treated and control tRNA preparations, labeled with radioactive amino acids, indicates identical aminoacylation in vivo of isoaccepting tRNAs during plant development. One isoacceptor of isoleucine tRNA changes its elution profile after periodate treatment.Abbreviation RPC-5 reverse-phase-chromatography  相似文献   

19.
Abstract

This paper illustrates the fractionation of cytoplasmic transfer ribonucleic acid from rat liver by reversed-phase high performance liquid chromatography using a gradient of acetonitrile/ammonium acetate. The procedure is fast, highly reproducible, and gives an excellent resolution of the numerous tRNA population: about 50 peaks with area peak percentages ranging from 0.001 to 5 can be monitored. Uncharged tRNA preparations exhibited a chromatographic profile different from aminoacylated tRNA, thus suggesting a possible strategy to distinguish between aminoacylated and nonacylated tRNA species. Moreover, a first approach to map the HPLC peaks was attempted by chromatographing preparations of tRNA which had been aminoacylated with individual 3H-labeled aminoacids. Here is reported the case of tRNAPro, which gave three well separated radioactive peaks, most likely corresponding to tRNAPro isoacceptor species.  相似文献   

20.
The nucleotide sequence of tRNAIle from brewer's yeast Sacharomyces cerevisiae was determined. Its primary structure is pG-G-U-C-U-C-U-U-m1G-m2G- C-C-C-A-G-D-D-G-G-D-D-A-A-G-G-C-A-C-C-G-U-G-C-U-I-A-U-t6A-A-C-G-C-G-G-G-G-A- D-m5C-A-G-C-G-G-T-ψ-C-G-m1A-U-C-C-C-G-C-U-A-G-A-G-A-C-C-A-C-C-A. Its anticodon is I-A-U. It should therefore recognize the three isoleucine codons and is for this reason probably the only isoacceptor tRNA for isoleucine in brewer's yeast. It presents a large homology with its counterpart from Torulopsis utilis (87%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号