首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A pot study was conducted to measure the extent of and determine the factors controlling fine root and nodule shedding following coppicing of Sesbania sesban and Leucaena leucocephala. Fine (<2 mm) root biomass decreased below pre-cutting values, but the decreases were not statistically significant in either species. Living (white) nodule biomass decreased and dead (brown) nodule biomass increased significantly two weeks after cutting in both species. These changes were relatively greater in Sesbania than in Leucaena. In the uncut treatments of both species, fine root and nodule biomass were correlated with leaf biomass, and in the cut treatments, root and nodule biomass returned to near this apparent equilibrium by two weeks after cutting. Stem growth rate per unit leaf area was not different between cut and uncut treatments, nor was it correlated with root:leaf ratios in either species. Leucaena allocated a greater fraction of its total biomass below-ground, and a greater fraction of its below-ground biomass to coarse (>2 mm) roots than Sesbania. These results are consistent with the hypothesis that relatively lower allocation to below-ground storage tissue is the cause for Sesbania's relatively greater sensitivity to cutting.  相似文献   

2.
Dense dwarf bamboo population is a structurally and functionally important component in many subalpine forest systems. To characterize the effects of stem density on biomass, carbon and majority nutrients (N, P, K, Ca and Mg) distribution pattern, three dwarf bamboo (Fargesia denudata) populations with different stem densities (Dh with 220 ± 11 stems m?2, Dm with 140 ± 7 stems m?2, and Dl with 80 ± 4 stems m?2, respectively) were selected beneath a bamboo-fir (Picea purpurea) forest in Wanglang National Nature Reserve, Sichuan, China. Leaf, branch, rhizome, root and total biomass of dwarf bamboo increased with the increase of stem density, while carbon and nutrient concentrations in bamboo components decreased. Percentages of below-ground biomass and element stocks to total biomass and stocks decreased with the increase of stem density, whereas above-ground biomass and element stocks exhibited the opposite tendency. Moreover, more above-ground biomass and elements were allocated to higher part in the higher density population. In addition, percentages of culm biomass, above-ground biomass and element stocks below 100 cm culm height (H100) increased with the increase of stem density, while percentages of branch and leaf biomass below H100 decreased. Pearson’s correlation analyses revealed that root biomass, above-ground biomass, below-ground biomass and total biomass significantly correlated to leaf biomass in H100?200 and total leaf biomass within high density population, while they significantly correlated to leaf biomass in H50?150 within low density population. The results suggested that dwarf bamboo performed an efficient adaptive strategy to favor limited resources by altering biomass, carbon and nutrients distribution pattern in the dense population.  相似文献   

3.
Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine root systems in 12 temperate deciduous forest stands in Central Europe, we tested the hypotheses that (1) stand fine root biomass increases with tree diversity, and (2) ‘below-ground overyielding’ of species-rich stands in terms of fine root biomass is the consequence of spatial niche segregation of the roots of different species. The selected stands represent a gradient in tree species diversity on similar bedrock from almost pure beech forests to medium-diverse forests built by beech, ash, and lime, and highly-diverse stands dominated by beech, ash, lime, maple, and hornbeam. We investigated fine root biomass and necromass at 24 profiles per stand and analyzed species differences in fine root morphology by microscopic analysis. Fine root biomass ranged from 440 to 480 g m−2 in the species-poor to species-rich stands, with 63–77% being concentrated in the upper 20 cm of the soil. In contradiction to our two hypotheses, the differences in tree species diversity affected neither stand fine root biomass nor vertical root distribution patterns. Fine root morphology showed marked distinctions between species, but these root morphological differences did not lead to significant differences in fine root surface area or root tip number on a stand area basis. Moreover, differences in species composition of the stands did not alter fine root morphology of the species. We conclude that ‘below-ground overyielding’ in terms of fine root biomass does not occur in the species-rich stands, which is most likely caused by the absence of significant spatial segregation of the root systems of these late-successional species.  相似文献   

4.
采用生物量计算的竞争指数和通径分析的方法,研究了3种密度的梓树苗木地下竞争和地上竞争的关系及对总竞争的影响。结果显示,梓树苗木地下生物量、地上生物量和总生物量与密度密切相关,随着密度的增加,其根、茎、叶的生物量减少,根冠比均小于1。在同一密度条件下,地上竞争指数明显大于地下竞争指数,地上竞争对总竞争的直接作用范围(0.449 3~0.973 1)明显大于地下竞争对总竞争的直接作用(0.275 6~0.773 2)。研究表明,梓树幼苗地上茎、叶的竞争在梓树苗木总的竞争中占有重要地位。  相似文献   

5.
Fabião  A.  Madeira  M.  Steen  E.  Kätterer  T.  Ribeiro  C.  Araújo  C. 《Plant and Soil》1995,168(1):215-223
The distribution along the soil profile of Eucalyptus globulus root biomass was followed in a plantation in central Portugal at 1, 2 and 6 years after planting, using an excavation technique. The experimental design consisted of a control (C) and 3 treatments: application of solid fertilizers twice a year (F), irrigation without the application of fertilizers (I) and irrigation combined with liquid fertilizers (IL). Below- and above-ground biomass decreased as follows: IL>I>F>C. So, water stress limited growth more severely than nutrient stress. The roots rapidly colonized the top soil volume (0–20 cm depth) during the first year after planting. Fine root biomass 6 years after planting was 2.2, 1.8 and 1.6 times higher in IL treatment than it was respectively in control, and in F and I treatments. The distribution of fine roots along the soil profile 6 years after planting was more even in IL compared to the other treatments. However, fine roots in the top soil were more concentrated along the tree rows in the irrigated treatments than in the others. The proportion of below-ground biomass relative to the total tree biomass and the root/shoot ratio were higher in C than in the treatments at early growth stages. This pattern was not so clear 6 years after planting, due to the increased proportion of the tap root relative to total biomass, especially in the IL treatment.  相似文献   

6.
The distribution of the above-ground and below-ground biomass of Scots pine in southern Finland were investigated in trees of different ages (18–212 years) from two types of growth site. Secondly, some structural regularities were tested for their independence of age and growth site. Trees were sampled from dominant trees which could be expected to have a comparable position in stands of all ages. All stands were on sorted sediments. The biomass of the sample trees (18 trees) was divided into needles, branch sapwood and heartwood, stem sapwood and heartwood, stem bark, stump, large roots (diameter >20 cm), coarse roots (five classes) and fine roots. The amount of sapwood and heartwood was also estimated from the below-ground compartments. Trees on both types of growth site followed the same pattern of development of the relative shares of biomass compartments, although the growth rates were faster on the more fertile site. The relative amount of sapwood peaked after canopy closure, coinciding with the start of considerable heartwood accumulation. The relative amount of needles and fine roots decreased with age. The same was true of branches but to a lesser degree. The relative share of the below-ground section was independent of tree age. Foliage biomass and sapwood cross-sectional area were linearly correlated, but there were differences between the growth sites. Needle biomass was linearly correlated with crown surface area. The fine root to foliage biomass ratio showed an increasing trend with tree age.  相似文献   

7.
We tested whether plants allocate proportionately less biomass to roots in response to above-ground competition as predicted by optimal partitioning theory. Two population densities of Abutilon theophrasti were achieved by planting one individual per pot and varying spacing among pots so that plants in the two densities experienced the same soil volume but different degrees of canopy overlap. Density did not affect root:shoot ratio, the partitioning of biomass between fine roots and storage roots, fine root length, or root specific length. Plants growing in high density exhibited typical above-ground responses to neighbours, having higher ratios of stem to leaf biomass and greater leaf specific area than those growing in low density. Total root biomass and shoot biomass were highly correlated. However, storage root biomass was more strongly correlated with shoot biomass than was fine-root biomass. Fine-root length was correlated with above-ground biomass only for the small subcanopy plants in crowded populations. Because leaf surface area increased with biomass, the ratio between absorptive root surface area and transpirational leaf surface area declined with plant size, a relationship that could make larger plants more susceptible to drought. We conclude that A. theophrasti does not reallocate biomass from roots to shoots in response to above-ground competition even though much root biomass is apparently involved in storage and not in resource acquisition.  相似文献   

8.

Key message

In black spruce stands on permafrost, trees and understory plants showed higher biomass allocation especially to ‘thin’ fine roots (diam. < 0.5 mm) when growing on shallower permafrost table.

Abstract

Black spruce (Picea mariana) forests in interior Alaska are located on permafrost and show greater below-ground biomass allocation than non-permafrost forests. However, information on fine roots (roots <2 mm in diameter), which have a key role in nutrient uptake and below-ground carbon flux, is still limited especially for effects of different permafrost conditions. In this study, we examined fine root biomass in two black spruce stands with different depths to the permafrost table. In the shallow permafrost (SP) plot, fine root biomass of black spruce trees was 70 % of that in the deep permafrost (DP) plot. In contrast, ratio of the fine root biomass to above-ground biomass was greater in the SP plot than in the DP plot. Understory plants, on the other hand, showed larger fine root biomass in the SP plot than in the DP plot, whereas their above-ground biomass was similar between the two plots. In addition, biomass proportion of ‘thin’ fine roots (diam. <0.5 mm) in total fine roots was greater in the SP plot than in the DP plot. These results suggest that black spruce trees and understory plants could increase biomass allocation to fine roots for efficient below-ground resource acquisition from colder environments with shallower permafrost table. In the SP plot, fine roots of understory plants accounted for 30 % of the stand fine root biomass, suggesting that understory plants such as Ledum and Vaccinium spp. would have significant contribution to below-ground carbon dynamics in permafrost forests.
  相似文献   

9.
水曲柳苗木地下竞争与地上竞争的定量研究   总被引:16,自引:1,他引:16  
对3种密度进行栽培试验,利用通径分析的方法,研究了水曲柳地下竞争和地上竞争的关系及对总竞争的影响。结果表明,水曲柳苗木的地下部分生物量、地上部分生物量和总生物量与营养空间有密切关系。随着苗木空间距离增加,由生物量计算的竞争指数下降。在同一密度条件下,地下竞争指数明显大于地上竞争指数。由于地下生长与地上生长的相互作用,各竞争指数之间具有明显的相关性。但是地下竞争和地上竞争对总竞争的影响是不同的,通径分析可以定量的区分地下竞争和地上竞争的相对大小。地下竞争对总竞争的直接作用范围在0.5543~0.7426之间,明显大于地上竞争对总竞争的直接作用(0.2851~0.5282)。随着距离的增加,单株苗木的生长空间加大,地上部分的竞争作用增加,地下部分的竞争程度减弱。但是,地下根系的竞争在水曲柳苗木总的竞争中占有重要地位。  相似文献   

10.
We investigated the seasonal variability of effects of elevated temperature (+3.5°C), CO2 elevation (700 μmol mol−1) and varying water regimes (high to low water content) on physiological responses and biomass growth of reed canary grass (Phalaris arundinacea L., local field-grown cultivar) grown in a boreal environment. In controlled environment greenhouses, various physiological and growth parameters of grass, i.e., light-saturated net photosynthetic rates (P nmax), water use efficiency (WUE) and optimal photochemical efficiency of photosystem II (F v/F m), and leaf area development and biomass of plant organs (leaf, stem, coarse, and fine root) were measured. During the early measurement periods, elevated temperature enhanced leaf photosynthesis and above-ground biomass of reed canary grass; however, this resulted in earlier senescence and lower biomass at the end of measurement period, compared to ambient temperature. This effect was more pronounced under water limitation. Elevated CO2 enhanced P nmax, WUE, and leaf area and total plant biomass (above- and below-ground) over growing season. The explanation for imbalance between stimulated photosynthesis and increase in above-ground biomass was that CO2 enrichment causes a greater increase in the plant’s root system. The combination of elevated temperature and CO2 slightly increases the growth of plant. Adequate water availability favored photosynthesis and biomass growth of reed canary grass. The temperature- and drought-induced stresses were partially mitigated by elevated CO2. Other cultivars should be tested in order to identify those that are better adapted to elevated temperatures and CO2 and variable water levels.  相似文献   

11.
Abstract

Fine roots (<2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors. The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m?2, and that of spruce and pine 297 g m?2 and 277 g m?2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone. The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.  相似文献   

12.
Fine roots are expected to be important determinants of plant competition, but very little is known about the extent of root system overlap. Here, we describe the application of two highly variable plastide microsatellites to study the fine root distribution of tree individuals in a silver fir forest. We demonstrate that the spread of fine roots exceeds the width of above-ground parts, and that fine root overlaps among neighbouring trees are extensive both laterally and in depth. This approach will help to improve models of below-ground competition and will facilitate estimations of fine root biomass and thus of below-ground C pools.  相似文献   

13.
Ch. Körner  U. Renhardt 《Oecologia》1987,74(3):411-418
Summary Partitioning patterns in 22 exclusively low and 27 exclusively high altitude perennial herbaceous species were examined in order to test the hypothesis that plants of high altitudes allocate more dry matter to below-ground parts and in particular to storage organs, than typical low altitude plants. Our results raise some doubts about the general validity of this hypothesis. The mean fractions of total dry matter allocated to green leaves (22±2% s.e. at low and 24±2% at high altitude) and special storage organs (28±4% at both altitudes) do not differ significantly among sites. The mean relative portions of total dry matter allocated to above-ground plant parts amount to 57±3% at low and 42±3% at high elevation (P=0.002) and differ less than often assumed. The greater below-ground fraction at high altitude results from reduced stem and proportionally increased fine root compartments. At high altitude specific root length is increased by 50% and mean individual rooting density is tripled. Fine root length per unit leaf area is 4.5 times greater (P<0.001). However, interspecific variation in all these quantities is considerable and species with quite contrasting partitioning patterns coexist at both elevations. This suggests that the success of perennial herbaceous plants at high elevations does not necessarily depend on a large below ground biomass fraction. The increased fine root length at high altitude may substitute for reduced mycorrhizal infection. Figure 1 provides a graphical summary.  相似文献   

14.
Maestre  Fernando T.  Cortina  Jordi 《Plant and Soil》2002,241(2):279-291
In arid and semi-arid areas with sparse vegetation cover, the spatial pattern of surface soil properties affects water and nutrient flows, and is a question of considerable interest for understanding degradation processes and establishing adequate management measures. In this study, we investigate the spatial distribution of vegetation and surface soil properties (biological crusts, physical crusts, mosses, rock fragments, earthworm casts, fine root accumulation and below-ground stones) in a semi-arid Stipa tenacissima L. steppe in SE Spain. We applied the combination of spatial analysis by distance indices (SADIE) and geostatistics to assess the spatial pattern of soil properties and vegetation, and correlation analyses to explore how these patterns were related. SADIE analysis detected significant clumped patterns in the spatial distribution of vegetation, mosses, fine root accumulation and below-ground stone content. Contoured SADIE index of clustering maps suggested the presence of patchiness in the distribution of earthworm casts, fine roots, below-ground stone content, mosses and biological crusts. Correlation analyses suggested that spatial pattern of some soil properties such as biological crusts, moss cover, surface rock fragments, physical crusts and fine roots were significantly related with above-ground plant distribution. We discuss the spatial arrangement of surface soil properties and suggest mechanistic explanations for the observed spatial patterns and relationships.  相似文献   

15.
植物种群自疏过程中构件生物量与密度的关系   总被引:3,自引:0,他引:3  
黎磊  周道玮  盛连喜 《生态学报》2012,32(13):3987-3997
不论是在对植物种群自疏规律还是在对能量守衡法则的研究中,个体大小(M)大多针对植物地上部分生物量,地下部分和构件生物量及其动态十分重要又多被忽视。以1年生植物荞麦为材料研究了自疏种群地下部分生物量、包括地下部分的个体总生物量以及各构件生物量与密度的关系。结果表明:平均地上生物量和个体总生物量与密度的异速关系指数(γabove-ground和γindividual)分别为-1.293和-1.253,与-4/3无显著性差异(P>0.05),为-4/3自疏法则提供了有力证据;平均根生物量-密度异速指数γroot(-1.128)与-1无显著性差异(P>0.05),与最终产量恒定法则一致;平均茎生物量-密度异速指数γstem(-1.263)接近-4/3(P>0.05),平均叶生物量-密度异速指数γleaf(-1.524)接近-3/2(P>0.05),分别符合-4/3自疏法则与-3/2自疏法则;而繁殖生物量与密度的异速关系指数γreproductive(-2.005)显著小于-3/2、-4/3或-1(P<0.001)。因此,不存在一个对植物不同构件普适的生物量-密度之间的关系。光合产物在地上和地下构件的生物量分配格局以及构件生物量与地上生物量之间特异的异速生长关系导致不同构件具有不同的自疏指数。无论对于地上生物量还是个体总生物量,荞麦种群能量均守衡,而对于地下生物量,荞麦种群能量不守衡。  相似文献   

16.
Wildová  Radka 《Plant Ecology》2004,174(2):321-338
Studies of spatial patterns in grassland plant communities have focused on above-ground patterns, ignoring the fact that in clonal plant communities, such as those found in grasslands, above-ground spatial structure must reflect below-ground horizontal growth. The present study examines, at both a fine and a coarse spatial scale, relationships between rhizome and ramet distribution. At the coarse scale, the dominance of species differed between above- and below-ground; some species dominated only above- or below-ground, and others dominated in both layers. At the fine scale, a single species' ramet aggregation above-ground significantly differed from its rhizome aggregation below-ground, for many species. Even for a given species, quantitative relationships between above- and below-ground dominance varied among localities. The variation in spatial pattern among species can be explained by attributes of clonal growth form, including rhizome size, rhizome origin and pattern of above-ground ramet aggregation. Using these parameters of clonal growth, four major space occupation patterns were described for mountain grassland species. For species with a high abundance of evenly distributed rhizomes, ramets either i) reflect rhizome distribution, or ii) do not fully reflect rhizome distribution, but rather are spatially aggregated, and rhizomes are typically developed below-ground. For species with a low abundance of rhizomes, ramets either iii) reflect rhizome distribution and rhizomes are typically of above-ground origin, or iv) do not reflect rhizome distribution and are aggregated only at the growing tips of rhizomes. Spatial correlation above-ground among species was the same as below-ground for some pairs of species but was significantly different for other pairs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Differences in spatial rooting patterns among coexisting species have been recognized as an important mechanism for generating biodiversity effects on ecosystem functioning. However, it is not yet clear whether complementarity in root space exploration is a universal characteristic of multi-species woody communities. In a temperate broad-leaved forest with a mosaic of species-poor and species-rich stands, we tested two hypotheses related to putative below-ground ‘overyielding’ in more diverse forests, (1) that species mixture results in a partial spatial segregation of the fine root systems of different species, and (2) that stand fine root biomass increases with tree species diversity. We investigated 12 stands either with one, three, or five dominant tree species (4 replicate stands each) under similar soil and climate conditions for stand fine root biomass and spatial root segregation in vertical and horizontal direction in the soil. Fine roots of different tree species were identified using a morphological key based on differences in colour, periderm surface structure, and branching patterns. In species-poor and species-rich stands, and in all tree species present, fine root density (biomass per soil volume) decreased exponentially with soil depth at very similar rates. Stand fine root biomass in the densely rooted upper soil (0–40 cm depth) was not significantly different between stands with 1, 3 or 5 dominant tree species. We conclude that ‘below-ground overyielding’ in terms of higher fine root biomasses in species-rich stands as compared to monospecific ones does not occur in these broad-leaved forests which most likely results from a missing complementarity in vertical rooting patterns of the present tree species.  相似文献   

18.
Open‐pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re‐establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (< 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.  相似文献   

19.
To improve establishment yield and carbon accumulation during reforestation, analyses of species adaptations to local environments are needed. Here we measured, at the individual scale, links between biomass accumulation and multiple-level tree traits: biomass partitioning, crown morphology and leaf physiology. The study was carried out on one- and three-year-old individuals of five tropical tree species assigned to pioneer (P) or non-pioneer (NP) functional groups. Among the species, Cedrela odorata, Luehea seemannii and Hura crepitans showed the greatest biomass accumulation. On our seasonally dry site, species performance during the first year was dependent on a greater investment in above-ground foraging, while performance after three years was mainly related to water relations. However, large biomass accumulations were not simply associated with an efficient water use but also with contrasting water uses, based on inter-specific relationships. Generally, greater carbon isotope discrimination (Δleaf) was related to greater allocation to roots. Species with high Δleaf generally showed high leaf potential nitrogen use efficiency (PNUE), suggesting that lower water use efficiency (WUE) increases the efficiency of photosynthetically active N. Also, PNUE was negatively correlated to leaf mass per area (LMA), implying that photosynthetically active N is diluted as total leaf mass increases. Finally, no distinction in measured traits, including biomass accumulation, was observed between the two functional groups.  相似文献   

20.
Allometry, biomass, and productivity of mangrove forests: A review   总被引:15,自引:8,他引:7  
We review 72 published articles to elucidate characteristics of biomass allocation and productivity of mangrove forests and also introduce recent progress on the study of mangrove allometry to solve the site- and species-specific problems. This includes the testing of a common allometric equation, which may be applicable to mangroves worldwide. The biomass of mangrove forests varies with age, dominant species, and locality. In primary mangrove forests, the above-ground biomass tends to be relatively low near the sea and increases inland. On a global scale, mangrove forests in the tropics have much higher above-ground biomass than those in temperate areas. Mangroves often accumulate large amounts of biomass in their roots, and the above-ground biomass to below-ground biomass ratio of mangrove forests is significantly low compared to that of upland forests (ANCOVA, P < 0.01). Several studies have reported on the growth increment of biomass and litter production in mangrove forests. We introduce some recent studies using the so-called “summation method” and investigate the trends in net primary production (NPP). For crown heights below 10 m, the above-ground NPP of mangrove forests is significantly higher (ANOVA, P < 0.01) than in those of tropical upland forests. The above-ground litter production is generally high in mangrove forests. Moreover, in many mangrove forests, the rate of soil respiration is low, possibly because of anaerobic soil conditions. These trends in biomass allocation, NPP, and soil respiration will result in high net ecosystem production, making mangrove forests highly efficient carbon sinks in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号