首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Inositol 1,4,5-trisphosphate (InsP(3)) production in single cerebellar granule neurons (CGNs) grown in culture was measured using the PH domain of phospholipase C delta1 tagged with enhanced green fluorescent protein (eGFP-PH(PLCdelta1)). These measurements were correlated with changes in intracellular free Ca2+ determined by single cell imaging. In control CGNs, intracellular Ca2+ stores appeared replete. However, the refilling state of these stores appeared dependent on the fluorophore used to measure Ca2+-release. Thus, methacholine (MCH), acting via muscarinic acetylcholine-receptors (mAchRs), mobilised intracellular Ca2+ in cells loaded with fluo-3 and fura-4f, but not fura-2. Confocal measurements of single CGNs expressing eGFP-PH(PLCdelta1) demonstrated that MCH stimulated a robust peak increase in InsP(3), which was followed by a sustained plateau phase of InsP(3) production. In contrast, glutamate-induced InsP(3) signals were weak or not detectable. MCH-stimulated InsP(3) production was reduced by chelation of intracellular Ca2+ with BAPTA, and emptying of intracellular stores with thapsigargin, indicated a positive feedback effect of Ca2+ mobilisation onto PLC activity. In CGNs, NMDA- and KCl-mediated Ca2+-entry significantly enhanced MCH-induced InsP(3) production. Furthermore, mAchR-mediated PLC activation appeared sensitive to the full dynamic range of intracellular Ca2+ increases stimulated by 100 microm NMDA. This dynamic regulation was also observed at the level of PKC activation indicated by an enhanced translocation of eGFP-tagged myristoylated alanine-rich C kinase substrate (MARCKS) protein in cells stimulated with MCH. Thus, NMDA-mediated Ca2+ influx and PLC activation may represent a coincident-detection system whereby ionotropic and metabotropic signals combine to stimulate InsP(3) production and PKC-mediated phosphorylation events in CGNs.  相似文献   

2.
Presenilins (PSs) are involved in processing several proteins such as the amyloid precursor protein (APP), as well as in pathways for cell death and survival. We previously showed that some familial Alzheimer's disease PS mutations cause increased basal and acetylcholine muscarinic receptor-stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha and PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout MEFs. Also, PKCdelta levels were lowered after transfection of PS1 into PS1 knockout or PS double knockout MEFs. Using APP knockout MEFs we showed that the expression of PKCalpha, but not the other PKC isoforms is partially dependent on APP and can be regulated by APP intracellular domain (AICD). These results show that PLC and PKC activations are modulated by PS and also that PSs differentially regulate the expression of PKC isoforms by both APP/AICD-dependent and independent mechanisms.  相似文献   

3.
The cationic amphiphile, cholesteryl-3-carboxyamidoethylene-trimethylammonium iodide, can alter the substrate specificity of protein kinase C (PKC). The phosphorylation of histone catalyzed by PKC requires the binding of the enzyme to phospholipid vesicles. This cationic amphiphile reduces both the binding of PKC to lipid and as a consequence its rate of phosphorylation of histone. In contrast, PKC bound to large unilamellar vesicles (LUVs) composed of 50 mol % POPS, 20 mol % POPC, and 30 mol % of this amphiphile catalyzes protamine sulfate phosphorylation by an almost 4 fold greater rate. This activation requires phosphatidylserine (PS) and is inhibited by Ca2+. The extent of activation is affected by the time of incubation of PKC with LUVs. This data suggests a novel mechanism by which PKC-dependent signal transduction pathways may be altered by altering the protein targets of this enzyme.  相似文献   

4.
The purpose of this study was to investigate whether plasma can influence the phosphorylation of protein kinase C (PKC). Lysate samples were prepared from normal skin or melanoma tissue and were reacted with a PKC peptide substrate in the presence or absence of plasma. In normal skin tissue lysates, the phosphorylation rates were much lower than those in melanoma tissue lysates. However, the level of phosphorylated peptide was increased in both normal skin and melanoma tissue lysates if plasma was present. Phosphorylation rates in the samples taken from the centre of B16 melanoma tissue were lower than those in samples taken from the edge. Moreover, addition of activator and/or cofactors (diacylglycerol, phosphatidylserine and/or Ca2+) of PKC, or plasma to the lysates contaminated by plasma had no effect on phosphorylation rates for the peptide substrate. These results indicate that plasma can play a role of activator and cofactor for substrate phosphorylation.  相似文献   

5.
The effects of cAMP-dependent protein kinase A and protein kinase C on cell-cell communication have been examined in primary ovarian granulosa cells microinjected with purified components of these two regulatory cascades. These cells possess connexin43 ( 1)-type gap junctions, and are well-coupled electrotonically and as judged by the cell-to-cell transfer of fluorescent dye. Within 2–3 min after injection of the protein kinase A inhibitor (PKI) communication was sharply reduced or ceased, but resumed in about 3 min with the injection of the protein kinase A catalytic subunit. A similar resumption also occurred in PKI-injected cells after exposure to follicle stimulating hormone. Microinjection of the protein kinase C inhibitor protein caused a transient cessation of communication that spontaneously returned within 15–20 min. Treatment of cells with activators of protein kinase C, TPA or OAG for 60 min caused a significant reduction in communication that could be restored within 2–5 min by the subsequent injection of either the protein kinase C inhibitor or the protein kinase A catalytic subunit. With a longer exposure to either protein kinase C activator communication could not be restored and this appeared to be related to the absence of aggregates of connexin43 in membrane as detected immunologically. In cells injected with alkaline phosphatase communication stopped but returned either spontaneously within 20 min or within 2–3 min of injecting the cell with either the protein kinase A catalytic subunit or with protein kinase C. When untreated cells were injected with protein kinase C communication diminished or ceased within 5 min. Collectively these results demonstrate that cell-cell communication is regulated by both protein kinase A and C, but in a complex interrelated manner, quite likely by multiple phosphorylation of proteins within or regulating connexin-43 containing gap junctions.Abbreviations C catalytic subunit of protein kinase A - CKI protein kinase C inhibitor protein - Cx connexin protein - dbcAMP N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate - OAG 1-oleoyl-2-acetyl-sn-glycerol - protein kinase A cAMP-dependent protein kinase - protein kinase C Ca2+-sensitive phospholipid-dependent protein kinase - PKI protein kinase A inhibitor protein - R regulatory subunit of protein kinase A - TRA 12-O-tetradecanoylphorbol-13-acetate - 8Br-cAMP 8-bromoadenosine 3:5 cyclic monophosphate  相似文献   

6.
Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell-lines. Whereas recombinant tumor necrosis factor-alpha (rTNF-alpha) slightly up-regulated CD93 expression on the U937 cells, recombinant interleukin-1beta (rIL-1beta), recombinant interleukin-2 (rIL-2), recombinant interferon-gamma (rIFN-gamma) and lipopolysaccharide (LPS) had no effect. Taken together, these findings indicate that the regulation of CD93 expression on these cells involves the PKC isoenzymes.  相似文献   

7.
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3,5-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C.  相似文献   

8.
Threonine(668) (thr(668)) within the carboxy-terminus of the Alzheimer's disease amyloid precursor protein (APP) is a known in vivo phosphorylation site. Phosphorylation of APPthr(668) is believed to regulate APP function and metabolism. Thr(668) precedes a proline, which suggests that it is targeted for phosphorylation by proline-directed kinase(s). We have investigated the ability of four major neuronally active proline-directed kinases, cyclin dependent protein kinase-5, glycogen synthase kinase-3 beta, p42 mitogen-activated protein kinase and stress-activated protein kinase-1b, to phosphorylate APPthr(668) and report here that SAPK1b induces robust phosphorylation of this site both in vitro and in vivo. This finding provides a molecular framework to link cellular stresses with APP metabolism in both normal and disease states.  相似文献   

9.
Bovine seminal plasma contains a group of similar proteins, namely BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins), and they are secreted by the seminal vesicles. In our study, we purified the BSP-A1/-A2 through affinity chromatography and found for the first time that BSP-A1/-A2 can inhibit the activity of protein kinase C (PKC) and tyrosine protein kinase (TPK). The inhibition was dose dependent. When the PKC and TPK activities are expressed as the logarithm of percentage activity taking the activity in the absence of the BSP-A1/-A2 as 100%, there is a linear relationship between the their activities and the dose of BSP-A1/-A2.  相似文献   

10.
The purpose of this study was to investigate the effect of kainate on protein kinase C (PKC), -aminobutyrate (GABA) and serotonin uptake in the rabbit retina. Kainate when injected into the vitreous humour produces a change in the GABA immunoreactivity within 6 hours. After 3 days, remnants of the normal GABA immunoreactivity still persist and additionally astrocyte and microglia-like elements stain positively for GABA. After 7 days exposure to kainate none of the normal GABA immunoreactivity is apparent, instead a number of round-shaped elements which may be reactive astrocytes and/or microglia stain positively for GABA. During these stages kainate does not affect the PKC immunoreactivity associated with the on-bipolar cells. Six hours following kainate treatment the ability of certain GABA amacrine cells to take up exogenous serotonin is unaffected. After three days only a few of these cells can still take up exogenous serotonin and then not avidly. After seven days the GABA/serotonin amacrine cells cannot take up exogenous serotonin suggesting that all of these neurons are irreversibly damaged. One hour after treatment with kainate both calcium-dependent and-independent PKC species are translocated from the cytosolic to membrane compartments. After 5 hours and 7 days there was also evidence from the enzyme assay experiments that kainate caused the calcium-dependent and-independent PKC enzymes to be translocated but because the total enzyme activity was reduced due perhaps to down-regulation of the enzyme this was difficult to assess precisely. However, the electrophoresis/blotting experiments of tissues exposed for 5 hours (but not one hour) to kainate established clearly that , , and PKC are translocated from cytosolic and membrane compartments.  相似文献   

11.
A calcium-sensitive, phospholipid-dependent protein kinase (protein kinase C) and its three isozymes were purified from rat heart cytosolic fractions utilizing a rapid purification method. The purified protein kinase C enzyme showed a single polypeptide band of 80 KDa on SDS-polyacrylamide gel electrophoresis, and was totally dependent on the presence of Ca2+ and phospholipid for activity. Diacylglycerol was also found to stimulate enzymatic activity. Autophosphorylation of the purified PKC showed an 80 KDa polypeptide. The identity of the purified protein was also verified with monoclonal antibodies specific for PKC. Further fractionation of the purified PKC on a hydroxylapatite column yielded three distinct peaks of enzyme activity, corresponding to type I, II and III based on similar chromatographic behaviour as the rat brain enzyme. All three forms were entirely Ca2– and phosphatidylserine dependent. Type II was found to be the most abundant. Type I was found to be highly unstable. PKC activity studies demonstrate that types II and III isozymic forms are different with respect to their sensitivity to Ca2+.Abbreviations PKC Protein Kinase C - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis - Km Michaelis constant - NBT Nitro-Blue Tetrazolium - BCIP 5-Bromo-4-Chloro-3-Indolyl Phosphate  相似文献   

12.
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.  相似文献   

13.
Protein kinases exhibit various degrees of substrate specificity. The large number of different protein kinases in the eukaryotic proteomes makes it impractical to determine the specificity of each enzyme experimentally. To test if it were possible to discriminate potential substrates from non-substrates by simple computational techniques, we analysed the binding enthalpies of modelled enzyme-substrate complexes and attempted to correlate it with experimental enzyme kinetics measurements. The crystal structures of phosphorylase kinase and cAMP-dependent protein kinase were used to generate models of the enzyme with a series of known peptide substrates and non-substrates, and the approximate enthalpy of binding assessed following energy minimization. We show that the computed enthalpies do not correlate closely with kinetic measurements, but the method can distinguish good substrates from weak substrates and non-substrates.  相似文献   

14.
Summary The putative second messenger of certain atrial natriuretic factor (ANF) signal transductions is cyclic GMP. Recently, we purified a 180-kDa protein, apparently containing both ANF receptor and guanylate cyclase activities, and hypothesized that this is one of the cyclic GMP transmembrane signal transducers. The enzyme is ubiquitous and appears to be conserved. Utilizing the 180-kDa membrane guanylate cyclase, we now show that the 180-kDa guanylate cyclase is regulated in opposing fashions by two receptor signals—ANF stimulating it and protein kinase C inhibiting it. Furthermore, protein kinase C phosphorylates the 180-kDa enzyme. This suggests a novel switch on and switch off mechanism of the cyclic GMP signal transduction. Switch off represents the phosphorylation while switch on the dephosphorylation of the enzyme.  相似文献   

15.
Protein kinase C has recently attracted considerable attention because of its importance in the control of cell division, cell differentiation, and signal transduction across the cell membrane. The activity of this enzyme is altered by several lipids such as diacylglycerol, free fatty acids, lipoxins, gangliosides, and sulfatides. These lipids may interact with protein kinase C either directly or through calcium ions and produce their regulatory effect (activation or inhibition) on the activities of the enzymes phosphorylated by this kinase. These processes widen our perspective of the regulation of intercellular and intracelluular communication.Abbreviations used (PK-C) Protein kinase C - (cAMP-PK) cAMP dependent protein kinase - (DAG) diacylglycerol - (PtdSer) phosphatidylserine - (InsP 3) inositol 1,4,5-trisphosphate - (PtdIns 4,5-P2) inositol 4,5 bisphosphate - (FFA) free fatty acid - (MBP) myelin basic protein - (ATP) adenosine triphosphate - (GTP) guanine triphosphate - (TPA) 12-tetradecanoylphorbol-13-acetate - (EGF) epidermal growth factor - (PDGF) platelet derived growth factor - (NeuNAc) and N-acetylneuraminic acid  相似文献   

16.
In nearly all mammalian cells and tissues examined, protein kinase C (PKC) has been shown to serve as a major regulator of a phosphatidylcholine-specific phospholipase D (PLD) activity, At least 12 distinct isoforms of PKC have been described so far; of these enzymes only the α- and β-isoform were found to regulate PLD activity, While the mechanism of this regulation has remained unknown, available evidence suggests that both phosphorylating and non-phosphorylating mechanisms may be involved. A phosphatidylcholine-specific PLD activity was recently purified from pig lung, but its possible regulation by PKC has not been reported yet. Several cell types and tissues appear to express additional forms of PLD which can hydrolyze either phosphatidylethanolamine or phosphatidylinositol. It has also been reported that at least one form of PLD can be activated by oncogenes, but not by PKC activators, Similar to activated PKC, some of the primary and secondary products of PLD-mediated phospholipid hydrolysis, including phosphatidic acid, 1,2-diacylglycerol, choline phosphate and ethanolamine, also exhibit mitogenic/co-mitogenic effects in cultured cells. Furthermore, both the PLD and PKC systems have been implicated in the regulation of vesicle transport and exocytosis. Recently the PLD enzyme has been cloned and the tools of molecular biology to study its biological roles will soon be available. Using specific inhibitors of growth regulating signals and vesicle transport, so far no convincing evidence has been reported to support the role of PLD in the mediation of any of the above cellular effects of activated PKC.  相似文献   

17.
Cholesterylphosphoryldimethylethanolamine is a zwitterionic compound which is a good bilayer stabilizer. As has been found with many other compounds having these properties, cholesterylphosphoryldimethylethanolamine is found to be a potent inhibitor of protein kinase C in both vesicle and micelle assay systems. The kinetics of the inhibition in Triton X-100 micelles was non-competitive with respect to ATP, histone, diolein, phorbol ester and Ca2+. It has a Ki of about 30 m. The inhibition kinetics as a function of phosphatidylserine concentration is more complex but suggestive of competitive inhibition. Cholesterylphosphoryldimethylethanolamine does not prevent the partitioning of protein kinase C into the membrane. This inhibitor lowers the Ca2+-phosphatidylserine-independent phosphorylation of protamine sulfate by protein kinase C and directly affects the catalytic segment of the enzyme generated by tryptic hydrolysis. Thus, this zwitterionic bilayer stabilizing inhibitor of protein kinase C both competes with the binding of phosphatidylserine as well as affects the active site of protein kinase C.Abbreviation CPD cholesterylphosphoryldimethylethanolamine  相似文献   

18.
19.
20.
Summary

We present the results of a variety of studies showing that activation of protein kinase C (PKC) in oocytes of Chaetopterus pergamentaceus results in germinal vesicle breakdown (GVBD). Phorbol esters and diacylglycerol can initiate a morphologically normal GVBD accompanied by a spectrum of associated biochemical processes, including increased protein phosphorylation, a shift in protein synthesis and activation of a protein kinase, maturation promoting factor (MPF). MPF activation is essential for GVBD in response to phorbol esters. In addition, inhibitors of PKC can block naturally-induced GVBD. We also present evidence that PKC can phosphorylate p34cde2, the catalytic subunit of MPF and that phosphorylation by PKC increases the histone H1 kinase activity of immunoprecipitated MPF. Immunoblot studies show that Chaetopterus oocyte p34cdc2 is not tyrosine phosphorylated prior to the initiation of GVBD, indicating that activation of MPF at GVBD in this species does not require p80cdc25, the activator of MPF at mitosis. These results suggest that PKC is an essential regulator of GVBD which can directly phosphorylate and regulate p34cdc2. Since PKC is the intracellular receptor for and is directly activated by tumor-promoters, tumor promotion might involve acceleration of the cell cycle through modification of the enzymatic activity of MPF by PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号