首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Chlorella sorokiniana was cultured in the presence of 1 mg/1 triparanol succinate, there was a 42% reduction in total sterol concentration. Algal biomass was reduced by approximately the same amount. In addition to the cycloartenol, cyclolaudenol, 24-methyl-pollinastanol, ergosta-5, 7-dien-3β-ol, and ergosterol that occur in control culture, pollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergosta-8, 14, 22-trien-3β-ol, 5α-ergosta-8(14), 22-dien-3β-ol, 5α-ergosta-8(9), 22-dien-3β-ol, 5α-ergosta-8, 14-dien-3β-ol, 5α-ergost-8(9)-3n-3β-ol, 5α-ergost-8(14)-en-3β-ol, 5α-ergosta-7, 22-dien-3β-ol, and 5α-ergost-7-en-3β-ol were isolated and identified from triparanol succinate-treated cells. A biosynthetic pathway for sterol biosynthesis in this organism is postulated based on all the sterols that were isolated and identified in triparanol-treated cultures of C. sorokiniana. Cyclolaudenol appears to be the product of the first alkylation at C-24 in this organism rather than the more common 24-methylene cycloartanol. Since 24-methylene sterols are needed for the second alkylation reaction, this would explain the absence of C-29 sterols in C. sorokiniana. Four of the sterols identified in C. sorokiniana are reported for the first time in a living organism. They are: 24-methyl pollinastanol, 5α-ergosta-8, 14, 22-trien-3β-ol, 5α-ergosta-8(14), 22-dien-3β-ol and 5α-ergost-8(14)-en-3β-ol.  相似文献   

2.
Yang T  Law DM  Davies PJ 《Plant physiology》1993,102(3):717-724
Exogenously applied indole-3-acetic acid (IAA) strongly promoted stem elongation over the long term in intact light-grown seedlings of both dwarf (cv Progress No. 9) and tall (cv Alaska) peas (Pisum sativum L.), with the relative promotion being far greater in dwarf plants. In dwarf seedlings, solutions of IAA (between 10-4 and 10-3 M), when continuously applied to the uppermost two internodes via a cotton wick, increased whole-stem growth by at least 6-fold over the first 24 h. The magnitude of growth promotion correlated with the applied IAA concentration from 10-6 to 10-3 M, particularly over the first 6 h of application. IAA applied only to the apical bud or the uppermost internode of the seedling stimulated a biphasic growth response in the uppermost internode and the immediately lower internode, with the response in the latter being greatly delayed. This demonstrates that exogenous IAA effectively promotes growth as it is transported through intact stems. IAA withdrawal and reapplication at various times enabled the separation of the initial growth response (IGR) and prolonged growth response (PGR) induced by auxin. The IGR was inducible by at least 1 order of magnitude lower IAA concentrations than the PGR, suggesting that the process underlying the IGR is more sensitive to auxin induction. In contrast to the magnitude of the IAA effect in dwarf seedlings, applied IAA only doubled the growth in tall seedlings. These results suggest that endogenous IAA is more growth limiting in dwarf plants than in tall plants, and that auxin promotes stem elongation in the intact plant probably by the same mechanism of action as in isolated stem segments. However, since dwarf plants to which IAA was applied failed to reach the growth rate of tall plants, auxin cannot be the only limiting factor for stem growth in peas.  相似文献   

3.
The sterol composition of C. ellipsoidea was markedly changed when this alga was grown in the presence of 1 μg/g triparanol. Triparanol appears to inhibit the removal of 14α-methyl group, the second alkylation at C-24, Δ7-reductase, and Δ8 → Δ7-isomerase. The effect of triparanol in Chlorella is much more diversified than the specific effect originally assigned to it in animals.  相似文献   

4.
2-Isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine carboxylate methyl chloride, 90%, applied to rootless tobacco (Nicotiana tabacum cv. Samson) seedlings inhibits the incorporation of 14C-mevalonate into sterols. Concomitantly, the retardant causes the accumulation of squalene-2,3-epoxide, an intermediate in sterol biosynthesis. The results with tobacco are identical to those produced by the retardant in cell-free rat liver preparations.  相似文献   

5.
Incubation of soybean hypocotyl sections with 0.1 millimolar 2,2′-dipyridyl in the absence of auxin results in increases in growth rate and in cell wall extensibility lasting for about 3 hours. This is accompanied by greatly decreased biosynthesis of hydroxyproline, which ultimately appears in the wall, and in slightly reduced oxygen uptake, both of which continue for at least 9 hours. Continuous synthesis of hydroxyproline which appears in the cell wall is thus not necessary for short term growth. The decrease in growth and cell wall extensibility that occurs between the 3rd and 9th hours of dipyridyl inhibition cannot be attributed to cross-linking of newly synthesized hydroxyproline, since its synthesis is still inhibited.  相似文献   

6.
The replication of plus-strand RNA viruses depends on subcellular membranes. Recent genome-wide screens have revealed that the sterol biosynthesis genes ERG25 and ERG4 affected the replication of Tomato bushy stunt virus (TBSV) in a yeast model host. To further our understanding of the role of sterols in TBSV replication, we demonstrate that the downregulation of ERG25 or the inhibition of the activity of Erg25p with an inhibitor (6-amino-2-n-pentylthiobenzothiazole; APB) leads to a 3- to 5-fold reduction in TBSV replication in yeast. In addition, the sterol biosynthesis inhibitor lovastatin reduced TBSV replication by 4-fold, confirming the importance of sterols in viral replication. We also show reduced stability for the p92pol viral replication protein as well as a decrease in the in vitro activity of the tombusvirus replicase when isolated from APB-treated yeast. Moreover, APB treatment inhibits TBSV RNA accumulation in plant protoplasts and in Nicotiana benthamiana leaves. The inhibitory effect of APB on TBSV replication can be complemented by exogenous stigmasterol, the main plant sterol, suggesting that sterols are required for TBSV replication. The silencing of SMO1 and SMO2 genes, which are orthologs of ERG25, in N. benthamiana reduced TBSV RNA accumulation but had a lesser inhibitory effect on the unrelated Tobacco mosaic virus, suggesting that various viruses show different levels of dependence on sterol biosynthesis for their replication.Plus-stranded RNA [(+)RNA] viruses usurp various intracellular/organellar membranes for their replication. These cellular membranes are thought to facilitate the building of viral factories, promote a high concentration of membrane-bound viral proteins, and provide protection against cellular nucleases and proteases (1, 12, 35, 44). The membrane lipids and proteins may serve as scaffolds for targeting the viral replication proteins or for the assembly of the viral replicase complex. The subcellular membrane also may provide critical lipid or protein cofactors to activate/modulate the function of the viral replicase. Indeed, the formation of spherules, consisting of lipid membranes bended inward and viral replication proteins as well as recruited host proteins, has been demonstrated for several (+)RNA viruses (20, 30, 48). These virus-induced spherules serve as sites of viral replication. Importantly, (+)RNA viruses also induce membrane proliferation that requires new lipid biosynthesis. Therefore, it is not surprising that several genome-wide screens for the identification of host factors affecting (+)RNA virus replication unraveled lipid biosynthesis/metabolism genes (8, 23, 38, 50). However, in spite of these intensive efforts, understanding the roles of various lipids and lipid biosynthesis enzymes and pathways in (+)RNA virus replication is limited.Tomato bushy stunt virus (TBSV) is among the most advanced model systems regarding the identification of host factors affecting (+)RNA virus replication (32). Among the five proteins encoded by the TBSV genome, only the p33 replication cofactor and the p92pol RNA-dependent RNA polymerase (RdRp) are essential for TBSV RNA replication (55). p33 and p92pol are integral membrane proteins, and they are present on the cytosolic surface of the peroxisomes, the site of replicase complex formation and viral RNA replication (30, 42). Electron microscopic images of cells actively replicating tombusviruses have revealed the extensive remodeling of membranes and indicated active lipid biosynthesis (30, 34).Additional support for the critical roles of various lipids in TBSV replication comes from a list of 14 host genes involved in lipid biosynthesis/metabolism, which affected tombusvirus replication and recombination based on systematic genome-wide screens in yeast, a model host. These screens covered 95% of the host genes (16, 38, 50, 51). The 14 identified host genes involved in lipid biosynthesis/metabolism included 8 genes affecting phospholipid biosynthesis, 4 genes affecting fatty acid biosynthesis/metabolism, and 2 genes affecting ergosterol synthesis. These findings suggest that these lipids likely are involved, directly or indirectly, in TBSV replication in yeast.To further understand the roles of cellular membranes, lipids, and host factors in viral (+)RNA replication, we analyzed the importance of sterol biosynthesis in tombusvirus replication. Sterols are ubiquitous and essential membrane components in all eukaryotes, affecting many membrane functions. Sterols regulate membrane rigidity, fluidity, and permeability by interacting with other lipids and proteins within the membranes (4, 5). They also are important for the organization of detergent-resistant microdomains, called lipid rafts (45). The sterol biosynthesis differs in several steps in animals, fungi, and plants, but the removal of two methyl groups at the C-4 position is critical and rate limiting. The C-4 demethylation steps are performed by SMO1 (sterol4α-methyl-oxidase) and SMO2 in plants and by the orthologous ERG25 gene in yeast (10). Accordingly, erg25 mutant yeast accumulates 4,4-dimethylzymosterol, an intermediate in the sterol biosynthesis pathway (3). However, sterol molecules become functional structural components of membranes only after the removal of the two methyl groups at C-4. Therefore, ERG25 is an essential gene for yeast growth.Our previous genome-wide screens for factors affecting tombusvirus replication have identified two sterol synthesis genes, ERG25 and ERG4, that participate in different steps in the sterol biosynthesis pathway (11). In this work, we further characterized the importance of ERG25 in TBSV replication in yeast. The downregulation or pharmacological inhibition of ERG25 in yeast led to a 4- to 5-fold decreased TBSV RNA accumulation. The in vitro activity of the tombusvirus replicase was reduced when isolated from the yeast cells described above. We also found that the stability of p92pol viral replication protein decreased by 3-fold in yeast treated with a chemical inhibitor of ERG25. The inhibition of sterol biosynthesis in plant protoplasts or in plant leaves with a chemical inhibitor or the silencing of SMO1 and SMO2 genes also resulted in a reduction in TBSV RNA accumulation, supporting the roles of sterols in tombusvirus replication in plants as well.  相似文献   

7.
When Moniiinia fructigena was treated with S–1358 at a concentration of 10 μm, both quality and quantity of digitonin-precipitable sterols were markedly altered. The amount of ergosterol which is a major sterol in the control culture was reduced by S–1358 and the concomitant accumulation of obtusifoliol (one of 4α-methyl sterols) and 24-methylenedihy-drolanosterol (one of 4,4-dimethyl sterols) was observed. The time course study of acetate-U-14C incorporation into the digitonin-precipitable sterols revealed that 4α-methyl sterols accumulated slowly in the treated culture, while 4,4-dimethyl sterols accumulated rapidly. The accumulation of the sterols containing “extra1” methyl groups suggests that S–1358 blocks demethylation reactions in the conversion from lanosterol to ergosterol in M. fructigena.  相似文献   

8.
Avena stem segments, which respond with high amplitude, specificity, and sensitivity to gibberellic acid, were used to study the inhibition of gibberellin-induced elongation by the growth retardant alpha-cyclopropyl-alpha-(4-methoxyphenyl)-5-pyrimidine methanol (EL-531). It was found that EL-531 strongly inhibits gibberellic acid-induced elongation in this system at a concentration of 1 mm. From a double-reciprocal plot of elongation and gibberellic acid concentration, it seems that EL-531 and gibberellic acid do not compete reversibly for the same site of action. Also, because EL-531 effectively inhibits elongation in internodal tissue dissected away from the node and leaf sheath, it cannot be acting primarily by inhibiting the synthesis or transport of the leaf sheath factor(s). Because EL-531 causes lateral expansion of the stem segments as well as increased diameters of epidermal cells, in a manner very similar to the effects of colchicine, it is suggested that EL-531 inhibits gibberellic acid-induced elongation by somehow interfering with the orientation of the products of cell wall synthesis.  相似文献   

9.
The flowering of Asparagus seedlings induced by carbamate compoundswe had developed was triggered when the chemicals were appliedin such a way that they were active during the period of shootdifferentiation, i.e., 4 to 10 days after seeding. The rateof flowering was closely correlated to the decrease in the chlorogenicacid content of the bud primordium caused by the carbamate treatment.Cytokinins stimulated metabolism in the buds and decreased theinhibitory effect of the carbamates on it. The site of actionof the chemicals appears to be somewhere on the metabolic pathwaythat leads to the synthesis of chlorogenic acid. (Received August 2, 1990; Accepted February 14, 1991)  相似文献   

10.
Saab IN  Ho T  Sharp RE 《Plant physiology》1995,109(2):593-601
Previous work indicated that accumulation of abscisic acid (ABA) acts differentially to maintain elongation of the primary root and inhibit elongation of the mesocotyl of maize (Zea mays L.) seedlings at low water potentials ([psi]w). Subsequent results indicated specific locations in the elongation zones where elongation is maintained, inhibited, or unaffected by endogenous ABA at low [psi]w. This information was utilized in this study to identify in vitro translation products of RNA associated with the maintenance or inhibition of elongation in the primary root and mesocotyl, respectively, by endogenous ABA at low [psi]w. The results distinguished products associated specifically with the elongation responses from those nonspecifically associated with ABA accumulation or low [psi]w, as well as normal cell development and maturation. In the primary root, the maintenance of elongation at low [psi]w by ABA was associated with the maintenance of expression of three products that were also expressed during elongation at high [psi]w, the expression of a novel product, and the suppression of two products. In the mesocotyl, the inhibition of elongation by ABA after transplanting to low [psi]w was associated with the induction of a novel translation product. However, the induction of this product, as well as accumulation of ABA and inhibition of elongation, occurred without a decline in tissue water content. The results demonstrate the necessity of examining the association of gene expression with elongation responses to low [psi]w with a high degree of spatial resolution.  相似文献   

11.
Previous analysis of a transgenic tobacco line (BN1) that over-expressedrice phytochrome A (PhyA) indicated that the introduced PhyAwas spectrally and biologically active [Kay et al. (1989) PlantCell 1: 775, Nagatani et al. (1991) Proc. Natl. Acad. Sci. USA88: 5207]. In the present study, we have further investigatedresponses of the BN1 plants to light. Fluence rate dependenceanalysis of the inhibition of hypocotyl elongation indicatedthat the response is biphasic. The amplitude of the low fluencerate component increased by 2 to 3 fold in the BN1 plants comparedto the wild type. In contrast, the presence of rice PhyA didnot alter the level of chlorophyll in the BN1 seedlings grownunder the same light conditions. Ultrastructure studies showedthat chloroplasts in the BN1 plants were not significantly differentfrom those in the wild type plants, except that chloroplastsin the guard cells of the BN1 plants appeared to be more developedthan those of the wild type plants. The fluence response analysisof the potentiation of chlorophyll accumulation indicated nosignificant difference between the BN1 and the wild type plants.Thus, the introduced rice PhyA greatly influenced hypocotylelongation but did not significantly affect the greening process. 4Present address: NSFC Center for Biological Timing, Universityof Virginia Charlottesville, VA 22901, U.S.A. 5Present address: Advanced Research Laboratory, Hitachi Ltd.Hatoyama, Saitama, 350-03 Japan  相似文献   

12.
The removal of the cotyledons from 8-day-old light-grown Pisum sativum cv. Alaska seedlings caused a reduction in the rate of stem elongation to 50% of the intact control value. Gibberellic acid restored the stem elongation rate of decotylized plants to the level of the intact controls. The effect of decotylization was to lower both the rate of node formation and the rate of internode elongation. The steady state rate of internode elongation was reduced to 50% of the control rate by decotylization. Applied gibberellic acid did not restore the normal rate of node formation nor the lag in internode elongation caused by decotylization, but gibberellic acid did restore the normal steady state rate of internode elongation. Analysis of variance demonstrated an interaction between the cotyledons and applied gibberellic acid. 2-Isopropyl-4-dimethylamino-5-methyl phenyl-1-piperidine carboxylate methyl chloride inhibited internode elongation to the same extent in both intact and decotylized plants. The results indicate that the cotyledons are an effective source of gibberellin for the young pea seedling.  相似文献   

13.
14.
Callitriche platycarpa is a freshwater plant characterized by floating rosettes of leaves connected to the water-bed by threadlike (diameter < 1 mm) stems. The internodes within the rosettes are immature and short (< 2 mm). If they mature at the water surface, they become 10 to 30 mm long, but if the rosette is submerged the internodes elongate faster and to a greater extent (25–60 mm). This method of growth rate control is of interest.  相似文献   

15.
Four species,Sinapis albaL.,Medicago sativaL.,Gypsophila paniculataL.andPicea abies(L.) Karsten, were grown in three light regimes:darkness, low light (25 µmol m-2s-1for 10 min d-1) andhigh light (120 µmol m-2s-1for 12 h  d-1) and fourlevels of carbon dioxide: 0, 350, 700 and 1400±50 µll-1. Germination was not affected by any of the treatments.The effects of carbon dioxide on stem elongation were identicalin low and high light: stem length increased at a decreasingrate with level of carbon dioxide in all species. Level of carbondioxide also affected stem elongation in complete darkness,but the pattern was more complex and varied among species. Totalweight did not vary with level of carbon dioxide to any significantextent in either darkness or low light, but increased with levelof carbon dioxide at high light in all four species. Due tothe absence of any effect of carbon dioxide on growth in darknessand low light, we suggest the effects of carbon dioxide on stemelongation are independent of effects on growth and may be dueto a direct interaction with developmental processes. In contrast,level of carbon dioxide had little effect on allocation patternsin the dark and low light experiments, but had marked effectsin high light. Therefore, the effect of carbon dioxide on allocationwas probably due to the effects of carbon dioxide on growthrather than to any direct interaction between carbon dioxideand development. An understanding of the mechanisms by whichcarbon dioxide affects development may help us understand theoften variable effects of carbon dioxide upon plants.Copyright1998 Annals of Botany Company Sinapis albaL.;Medicago sativaL.;Gypsophila paniculataL. andPicea abies(L.) Karsten; elevated carbon dioxide; stem elongation; germination; allocation; phytochrome.  相似文献   

16.
17.
Hypocotyl elongation under white fluorescent light was aboutdoubled in dwarf watermelon (Citrullus lanatus0 (Thunb.) Matsu.and Nakai) seedlings treated with 0.1 to 0.3 µg apicaland 3 x 10–6 to 10.3 M root applications of 6-benzyladenine(BA). BA-enhancement of growth occurred primarily during thefirst 48 h after treatment. Increased hypocotyl length in BA-treatedseedlings was attributed more to longer cells than to an increasein cell number. Early hypocotyl growth of normal seedlings wasalso significantly enhanced by BA although final hypocotyl lengthwas not substantially affected. Benzyladenine caused expansion of cotyledons and, at higherdoses, lateral expansion of hypocotyls. BA-induced increasesin fresh weight of cotyledons and hypocotyls were accompaniedby an increase in dry weight of hypocotyls at the expense ofroots which had less dry matter than untreated seedlings.  相似文献   

18.
Since prostaglandins have been consistently recovered from a wide range of inflammatory reactions, including cutaneous inflammation, we have studied the effect of the anti-inflammatory corticosteroids hydrocortisone and fluocinolone on in-vitro biosynthesis of prostaglandins by skin. Skin homogenates synthesized prostaglandins E2 and F2α in the presence of an excess of arachidonic acid substrate. Inhibition of biosynthesis of both these prostaglandins by corticosteroids was demonstrated. Since several members of the prostaglandin group of agents can reproduce all the cardinal features of inflammation and are found in a wide range of inflammatory reactions it is concluded that at least part of the anti-inflammatory properties of corticosteroids is due to inhibition of prostaglandin biosynthesis.  相似文献   

19.
Effects of diamines, polyamines, and other basic amino acidson the growth of lettuce hypocotyls were investigated. Putrescine,cadaverine and agmatine enhanced the hypocotyl growth in thepresence of gibberellin, while spermidine and spermine werenon-effective. Arginine and ornithine, which may be precursorsof putrescine, had similar effect. While the growth inhibitiondue to arcaine (1,4-diguanidinobutane), which is a agmatineiminohydrolase inhibitor, was recovered by agmatine, cadaverine,putrescine, and spermidine, putrescine most effectively recoveredits growth-enhancing effect. (Received August 25, 1982; Accepted December 27, 1982)  相似文献   

20.
A study has been made of the hydroxyproline-induced inhibition of elongation of Avena coleoptile tissues. The isomers of 4-hydroxyproline differ in their effectiveness; only the L isomers are growth inhibitors with the cis form (allohydroxyproline) being more effective than the trans form (hydroxyproline).Hydroxyproline differs from other amino acid antagonists and protein synthesis inhibitors in respect to 2 characteristics of the growth inhibition. First, a certain increment of auxin-induced elongation must take place following addition of hydroxyproline before the growth is inhibited. In contrast, pretreatment with other amino acid antagonists or protein synthesis inhibitors completely eliminates the ability of Avena coleoptile sections to respond to auxin. Secondly, sucrose markedly increases the magnitude of the hydroxyproline inhibition; i.e., sucrose acts to inhibit rather than promote growth when in the presence of hydroxyproline.It appears that hydroxyproline is a specific inhibitor for the synthesis of some factor which is utilized in elongation. Following addition of hydroxyproline, auxin-induced elongation continues until the pool of this factor is exhausted; then elongation is inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号