首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
N Previsani  S Fontana  B Hirt    P Beard 《Journal of virology》1997,71(10):7769-7780
Two murine parvoviruses with genomic sequences differing only in 33 nucleotides (8 amino acids) in the region coding for the capsid proteins show different host cell specificities: MVMi grows in EL4 T lymphocytes and MVMp3 grows in A9 fibroblasts. In this study we compared the courses of infections with these two viruses in EL4 cells in order to investigate at which step(s) the infection process of MVMp3 is interrupted. The two viruses bound equally well to EL4 cells, and similar amounts of MVMi and MVMp3 input virion DNA appeared in the nuclear fractions of EL4 cells 1 h after infection. However, double-stranded replicative-form (RF) DNA of the two viruses appeared at different times, at 10 h postinfection with MVMi and at 24 h postinfection with MVMp3. The amount of MVMp3 RF DNA detected at 24 h was very small because it was produced only in a tiny subset of the population of EL4 cells that proved to be permissive for MVMp3. Replication of double-stranded viral DNA in EL4 cells was measured after transfection of purified RF DNA, cloned viral DNA, and cloned viral DNA with a mutation preventing synthesis of the capsid proteins. In each of these cases, DNA replication was comparable for MVMi and MVMp3. Production of virus particles also appeared to be similar after transfection of the two types of RF DNA into EL4 cells. Conversion of incoming 32P-labeled single-stranded MVM DNA to 32P-labeled double-stranded RF DNA was detected only after RF DNA amplification, indicating that few molecules serve as templates for viral DNA amplification. We showed that extracts of EL4 cells contain a factor which can destabilize MVMi virions but not MVMp3 by testing the sensitivity of viral DNA to DNase and by CsCl gradient analyses of viral particles. We therefore conclude that the MVMp3 life cycle is arrested after the transport of virions to the nucleus and prior to the replication of RF DNA, most likely at the stage of viral decapsidation.  相似文献   

2.
All gammaretroviruses, including murine leukemia viruses (MuLVs), feline leukemia viruses, and gibbon-ape leukemia virus, encode an alternate, glycosylated form of Gag polyprotein (glyco-Gag or gPr80gag) in addition to the polyprotein precursor of the viral capsid proteins (Pr65gag). gPr80gag is translated from an upstream in-frame CUG initiation codon, in contrast to the AUG codon used for Pr65gag. The role of glyco-Gag in MuLV replication has been unclear, since gPr80gag-negative Moloney MuLV (M-MuLV) mutants are replication competent in vitro and pathogenic in vivo. However, reversion to the wild type is frequently observed in vivo. In these experiments, in vivo inoculation of a gPr80gag mutant, Ab-X-M-MuLV, showed substantially lower (2 log) initial infectivity in newborn NIH Swiss mice than that of wild-type virus, and revertants to the wild type could be detected by PCR cloning and DNA sequencing as early as 15 days postinfection. Atomic force microscopy of Ab-X-M-MuLV-infected producer cells or of the PA317 amphotropic MuLV-based vector packaging line (also gPr80gag negative) revealed the presence of tube-like viral structures on the cell surface. In contrast, wild-type virus-infected cells showed the typical spherical, 145-nm particles observed previously. Expression of gPr80gag in PA317 cells converted the tube-like structures to typical spherical particles. PA317 cells expressing gPr80gag produced 5- to 10-fold more infectious vector or viral particles as well. Metabolic labeling studies indicated that this reflected enhanced virus particle release rather than increased viral protein synthesis. These results indicate that gPr80gag is important for M-MuLV replication in vivo and in vitro and that the protein may be involved in a late step in viral budding or release.  相似文献   

3.
Recent studies demonstrated the ability of the recombinant autonomous parvoviruses MVMp (fibrotropic variant of the minute virus of mice) and H-1 to transduce therapeutic genes in tumor cells. However, recombinant vector stocks are contaminated by replication-competent viruses (RCVs) generated during the production procedure. To reduce the levels of RCVs, chimeric recombinant vector genomes were designed by replacing the right-hand region of H-1 virus DNA with that of the closely related MVMp virus DNA and conversely. Recombinant H-1 and MVMp virus pseudotypes were also produced with this aim. In both cases, the levels of RCVs contaminating the virus stocks were considerably reduced (virus was not detected in pseudotyped virus stocks, even after two amplification steps), while the yields of vector viruses produced were not affected. H-1 virus could be distinguished from MVMp virus by its restriction in mouse cells at an early stage of infection prior to detectable viral DNA replication and gene expression. The analysis of the composite viruses showed that this restriction could be assigned to a specific genomic determinant(s). Unlike MVMp virus, H-1 virus capsids were found to be a major determinant of the greater permissiveness of various human cell lines for this virus.  相似文献   

4.
In this work, we report the transduction of a chloramphenicol acetyltransferase (CAT) reporter gene into a variety of normal and transformed human cells of various tissue origins. The vector used was MVM/P38cat, a recombinant of the prototype strain of the autonomous parvovirus minute virus of mice (MVMp). The CAT gene was inserted into the capsid-encoding region of the infectious molecular clone of MVMp genome, under the control of the MVM P38 promoter. When used to transfect permissive cells, the MVM/P38cat DNA was efficiently replicated and expressed the foreign CAT gene at high levels. By cotransfecting with a helper plasmid expressing the capsid proteins, it was possible to produce mixed virus stocks containing MVM/P38cat infectious particles and variable amounts of recombinant MVM. MVM/P38cat viral particles were successfully used to transfer the CAT gene and to express it in a variety of human cells. Both viral DNA replication and P38-driven CAT expression were achieved in fibroblasts, epithelial cells, T lymphocytes, and macrophages in a transformation-dependent way, but with an efficiency depending on the cell type. In transformed B lymphocytes, however, the vector was not replicated, nor did it express the CAT gene.  相似文献   

5.
Cholesterol, a major component of plasma membrane lipid rafts, is important for assembly and budding of enveloped viruses, including influenza and HIV-1. Cholesterol depletion impairs virus assembly and infectivity. This study examined the effects of exogenous cholesterol addition (delivered as a complex with methyl-beta-cyclodextrin (MbCD)) on the production of Molony murine leukemia virus (MoMuLV) retroviral vector and HIV-1-based lentiviral vector pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Cholesterol supplementation before and during vector production enhanced the infectivity of retroviral and lentiviral vectors up to 4-fold and 6-fold, respectively. In contrast, the amount of retroviral vector produced was unchanged, and that of lentiviral vector was increased less than 2-fold. Both free cholesterol and cholesterol ester content in 293-gag-pol producer cells increased with cholesterol addition. In contrast, the phospholipids headgroup composition was essentially unchanged by cholesterol supplementation in 293-gag-pol packaging cells. Based on these results, it is proposed that cholesterol supplementation increases the infectivity of VSV-G-pseudotyped retroviral and lentiviral vectors, possibly by altering the composition of the producer cell membrane where the viral vectors are assembled and bud, and/or by changing the lipid composition of the viral vectors.  相似文献   

6.
The viral protein Nef contributes to the optimal infectivity of human and simian immunodeficiency viruses. The requirement for Nef during viral biogenesis particles suggests that Nef might play a role in this process. Alternatively, because Nef is incorporated into viruses, it might play a role when progeny virions reach target cells. We challenged these hypotheses by manipulating the amounts of Nef incorporated in viruses while keeping its expression level constant in producer cells. This was achieved by forcing the incorporation of Nef into viral particles by fusing a Vpr sequence to the C-terminal end of Nef. A cleavage site for the viral protease was introduced between Nef and Vpr to allow the release of Nef fragments from the fusion protein during virus maturation. We show that the resulting Nef-CS-Vpr fusion partially retains the ability of Nef to downregulate cell surface CD4 and that high amounts of Nef-CS-Vpr are incorporated into viral particles compared with what is seen for wild-type Nef. The fusion protein is processed during virion maturation and releases Nef fragments similar to those found in viruses produced in the presence of wild-type Nef. Unlike viruses produced in the presence of wild-type Nef, viruses produced in the presence of Nef-CS-Vpr do not have an increase in infectivity and are as poorly infectious as viruses produced in the absence of Nef. These findings demonstrate that the presence of Nef in viral particles is not sufficient to increase human immunodeficiency virus type 1 infectivity and suggest that Nef plays a role during the biogenesis of viral particles.  相似文献   

7.
In vivo targeting of therapeutic genes to specific tissues has become a major issue in gene therapy, in particular when recombinant adenovirus vectors are used. Restriction of the viral tropism to selected cell types requires the abrogation of the interaction between the viral fiber and its natural cellular receptors and the introduction of a new binding specificity into the virion. In this context, fiberless adenoviruses are attractive vectors, since they may be used as substrates for the insertion of a new ligand in other capsid proteins. In this study, we confirm by using cloned full-length adenovirus genomes with the fiber gene deleted that efficient virus particle formation can occur in the absence of fiber. As expected, the infectivity of such fiberless viruses was severely reduced, but it could be only partially restored when the viruses were produced in cells stably providing the fiber in trans. Although incorporation of penton base into the fiberless particles was normal and binding of the particles to the cellular integrins was functional, several pieces of experimental evidence suggest that later steps in the cell entry process are impaired in correlation with an incorrect maturation of several structural proteins of the fiberless particles. These observations support the hypothesis that the fiber protein may have additional biological functions besides its role in cell binding. Together with the fiber complementation cells, such fiberless vectors constitute unique tools to investigate the role of the fiber in virus assembly, maturation, and cell entry and to explore the possibility of deriving gene transfer vectors with novel target specificities.  相似文献   

8.
The replication competence of human immunodeficiency virus type 1 genomes containing mutations in the nef open reading frame was evaluated in continuous cell lines. Mutants that contained a deletion in the nef open reading frame, premature termination codons, or missense mutations in the N-terminal myristoylation signal were constructed. The replication of these mutants was tested in three ways. First, plasmid genomes were used to transfect T-lymphoblastoid cells. Second, low-passage posttransfection supernatants were used to infect cells with a relatively low virus input. Third, high-titer virus stocks were used to infect cells with a relatively high virus input. These experiments demonstrated a 100- to 10,000-fold decrement in p24 production by the nef mutants compared with that by the wild-type virus. The greatest difference was obtained after infection with the lowest virus input. The myristoylation signal was critical for this positive effect of nef. To investigate the mechanism of the positive influence of nef, nef-positive and nef-minus viruses were compared during a single cycle of replication. These single-cycle experiments were initiated both by infection with high-titer virus stocks and by transfection with viral DNA. Single-cycle infection yielded a three- to fivefold decrement in p24 production by nef-minus virus. Single-cycle transfection yielded equal amounts of p24 production. These results implied that nef does not affect replication after the provirus is established. In support of these results, viral production from cells chronically infected with nef-positive or nef-minus viruses was similar over time. To determine whether the effect of nef was due to infectivity, end point titrations of nef-positive and nef-minus viruses were performed. nef-positive virus had a greater infectivity per picogram of HIV p24 antigen than nef-minus virus. These data indicated that the positive influence of nef on viral growth rate is due to an infectivity advantage of virus produced with an intact nef gene.  相似文献   

9.
10.
We constructed a full-length molecular clone of simian immunodeficiency virus from an African green monkey. Upon transfection, this clone directed the production of virus particles cytopathic and infectious to human CD4+ leukemia cell lines. Mutations were introduced by recombinant DNA techniques into eight open reading frames of simian immunodeficiency virus from the African green monkey thus far identified. The phenotypes of mutant viruses, i.e., infectivity, cytopathogenicity, transactivation of gene expression controlled by a long terminal repeat, and viral RNA and protein syntheses, were examined by transfection and infection experiments. Three structural (gag, pol, and env) and two regulatory (tat and rev) gene mutants were not infectious, whereas vif, vpx, and nef were dispensable for infectivity and mutant viruses were highly cytopathic. In transient transfection assays, a rev mutant produced mainly small mRNA species and no detectable virus protein and particles. The transactivation potential of a tat mutant was about 10-fold less than that of wild-type DNA, generating small amounts of virus.  相似文献   

11.
The preferential expression of autonomous parvoviruses in tumour cells and their oncolytic activity has attracted attention to the potential use of these viruses as vectors for cancer gene therapy. Moreover, they are non-pathogenic in adult animals and they seem to be associated with low or no immunogenicity. Other interesting features are their episomal replication and high stability. Vectors derived from the autonomous parvoviruses MVM(p) or H1 express proteins that can directly or indirectly interfere with tumour development. They retain cis- and trans-acting sequences required for viral DNA amplification; the transgene replaces part of the capsid coding genes. Their development has been hampered by low titres and contamination with replication-competent virus (RCV) that is generated through homologous recombination with helper plasmids. Several approaches have been used to avoid recombination between vectors and helpers. In most instances, reducing the homology up- or downstream of the transgene in either the vector or the helper did not significantly affect RCV production. However, completely eliminating homology downstream of the transgene, splitting VP genes on different helpers or pseudotyping vectors resulted in the production of RCV-free stocks. Although VP-containing particles could sometimes be identified in these stocks by in situ hybridisation, they did not amplify and are therefore not true RCV. The integration of capsid-coding sequences into packaging cells also reduced contamination by RCV and allowed for the amplification of vectors through serial infections. Great progress has been made recently towards the generation of truly RCV-free stocks of vectors derived from autonomous parvoviruses H1 and MVMp. Combining these new vectors with a new packaging cell line should greatly facilitate their development.  相似文献   

12.
Reovirus preferentially replicates in transformed cells and is being explored as a cancer therapy. Immunological and physical barriers to virotherapy inspired a quest for reovirus variants with enhanced oncolytic potency. Using a classical genetics approach, we isolated two reovirus variants (T3v1 and T3v2) with superior replication relative to wild-type reovirus serotype 3 Dearing (T3wt) on various human and mouse tumorigenic cell lines. Unique mutations in reovirus λ2 vertex protein and σ1 cell attachment protein were associated with the large plaque-forming phenotype of T3v1 and T3v2, respectively. Both T3v1 and T3v2 exhibited higher infectivity (i.e., a higher PFU-to-particle ratio) than T3wt. A detailed analysis of virus replication revealed that virus cell binding and uncoating were equivalent for variant and wild-type reoviruses. However, T3v1 and T3v2 were significantly more efficient than T3wt in initiating productive infection. Thus, when cells were infected with equivalent input virus particles, T3v1 and T3v2 produced significantly higher levels of early viral RNAs relative to T3wt. Subsequent steps of virus replication (viral RNA and protein synthesis, virus assembly, and cell death) were equivalent for all three viruses. In a syngeneic mouse model of melanoma, both T3v1 and T3v2 prolonged mouse survival compared to wild-type reovirus. Our studies reveal that oncolytic potency of reovirus can be improved through distinct mutations that increase the infectivity of reovirus particles.  相似文献   

13.
A plasmid‐based reverse genetics system for human astrovirus type 1 (HAstV1) is examined. Upon transfection into 293T cells, the plasmid vector, which harbors a HAstV1 expression cassette, expressed astroviral RNA that appeared to be capable of viral RNA replication, as indicated by the production of subgenomic RNA and capsid protein expression irrespective of the heterologous 5′ ends of the transcribed RNA. Particles infectious to Caco‐2 cells were made in this system; however, their infectivity was much lower than would be expected from the amount of particles apparently produced. Using Huh‐7 cells as the transfection host with the aim of improving viral capsid processing for virion maturation partially restored the efficiency of infectious particle formation. Our results support the possibility that the DNA transfection process induces a cellular response that targets late, but not early, stages of HAstV1 infection.  相似文献   

14.
The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of low affinity, which favors systemic infection, is a major evolutionary process in the adaptation of parvoviruses to new hosts and in the cause of disease.  相似文献   

15.
Type 1 human immunodeficiency viruses encoding mutated nef reading frames are 10- to 30-fold less infectious than are isogenic viruses in which the nef gene is intact. This defect in infectivity causes nef-negative viruses to grow at an attenuated rate in vitro. To investigate the mechanism of Nef-mediated enhancement of viral growth rate and infectivity, a complementation analysis of nef mutant viruses was performed. To provide Nef in trans upon viral infection, a CEM derivative cell line (designated CLN) that expresses Nef under the control of the viral long terminal repeat was constructed. When nef-negative virus was grown in CLN cells, its growth rate was restored to wild-type levels. However, the output of nef-negative virus during the first 72 h after infection of CLN cells was not restored, suggesting that provision of Nef within the newly infected cell does not enhance the productivity of a nef-negative provirus. The genetically nef-negative virions produced by the CLN cells, however, were restored to wild-type levels of infectivity as measured in a syncytium formation assay in which CD4-expressing HeLa cells were targets. These trans-complemented, genetically nef-negative virions yielded wild-type levels of viral output following a single cycle of replication in primary CD4 T cells as well as in parental CEM cells. To define the determinants for producer cell modification of virions by Nef, the role of myristoylation was investigated. Virus that encodes a myristoylation-negative nef was as impaired in infectivity as was virus encoding a deleted nef gene. Because myristoylation is required for both membrane association of Nef and optimal viral infectivity, the possibility that Nef protein is included in the virion was investigated. Wild-type virions were purified by filtration and exclusion chromatography. A Western blot (immunoblot) of the eluate fractions revealed a correlation between peak Nef signal and peak levels of p24 antigen. Although virion-associated Nef was detected in part as the 27-kDa full-length protein, the majority of immunoreactive protein was detected as a 20-kDa isoform. nef-negative virus lacked both 27- and 20-kDa immunoreactive species. Production of wild-type virions in the presence of a specific inhibitor of the human immunodeficiency virus type 1 protease resulted in virions which contained only 27-kDa full-length Nef protein. These data indicate that Nef is a virion protein which is processed by the viral protease into a 20-kDa isoform within the virion particle.  相似文献   

16.
17.
18.
The structural proteins (SP) of the Togaviridae can be deleted in defective interfering RNAs. The dispensability of viral SP has allowed construction of noninfectious viral expression vectors and replicons from viruses of the Alphavirus and Rubivirus genera. Nevertheless, in this study, we found that the SP of rubella virus (RUB) could enhance expression of reporter genes from RUB replicons in trans. SP enhancement required capsid protein (CP) expression and was not due to RNA-RNA recombination. Accumulation of minus- and plus-strand RNAs from replicons was observed in the presence of SP, suggesting that SP specifically affects RNA synthesis. By using replicons containing an antibiotic resistance gene, we found 2- to 50-fold increases in the number of cells surviving selection in the presence of SP. The increases depended significantly on the amount of transfected RNA. Small amounts of RNA or templates that replicated inefficiently showed more enhancement. The infectivity of infectious RNA was increased by at least 10-fold in cells expressing CP. Moreover, virus infectivity was greatly enhanced in such cells. In other cells that expressed higher levels of CP, RNA replication of replicons was inhibited. Thus, depending on conditions, CP can markedly enhance or inhibit RUB RNA replication.  相似文献   

19.
Although vectors based on adeno-associated virus (AAV) offer several unique advantages, their usage has been hampered by the difficulties encountered in vector production. In this report, we describe a new AAV packaging system based on inducible amplification of integrated helper and vector constructs containing the simian virus 40 (SV40) replication origin. The packaging and producer cell lines developed express SV40 T antigen under the control of the reverse tetracycline transactivator system, which allows inducible amplification of chromosomal loci linked to the SV40 origin. Culturing these cells in the presence of doxycycline followed by adenovirus infection resulted in helper and vector gene amplification as well as higher vector titers. Clonal producer cell lines generated vector titers that were 10 times higher than those obtained by standard methods, with approximately 104 vector particles produced per cell. These stocks were free of detectable replication-competent virus. The lack of a transfection step combined with the reproducibility of stable producer lines makes this packaging method ideally suited for the large-scale production of vector stocks for human gene therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号