首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate the effect of moderate continuous overloading of the heart on 24-h water intake (WI), urine (Vu), sodium (UNaV), potassium (UKV), solute (Cosm) and free water (CH20) excretion. The overloading of heart was produced by construction of the fistula (AVF) between the femoral artery and the vena cava inferior. Twenty four hours WI, Vu, UNaV, UKV, Cosm, CH20, as well as central venous (CVP), arterial (MABP) and interstitial (IP) pressure and volume of the extracellular fluid (ECW) were examined before and 1, 2 or 3 months after production of AVF. Daily water intake, and water/food ratio decreased, whereas CVP, MABP and IP increased significantly after production of the fistula. A significant increase in ECW was found 1 month after production of AVF. It is suggested that a moderate overloading of the heart may cause a prolonged decrease in water intake, possibly due to augmentation of the inhibitory input from the cardiovascular receptors.  相似文献   

2.
The purpose of the study was to determine effect of high sodium intake on fluid and electrolyte turnover and heart remodeling in the cardiac failure elicited by myocardial infarction (MI). The experiments were performed on four groups of Sprague Dawley rats maintained on food containing 0.45% NaCl and drinking either water (groups 1, 2) or 1% NaCl (groups 3, 4). Groups 1 and 3 were sham-operated while in groups 2 and 4 MI was produced by the coronary artery ligation. In each group food and fluid as well as sodium intake, urine (Vu), sodium (UNaV), potassium (UKV) and solutes (UosmV) excretion were determined before and four weeks after the surgery. Size of the infarct, left ventricle (LV) weight and diameter of LV and right ventricle (RV) myocytes were determined during post-mortem examination. Before the surgery groups 3 and 4 ingested significantly more fluid and sodium, had higher Vu, UNaV, UKV and UosmV than the respective groups 1 and 2. In groups 2 and 4 MI resulted in significant decrease in Vu, UNaV and UosmV in comparison to the pre-surgical level. In Group 4 MI resulted also in a significant decrease of food and sodium intake. The MI size did not differ in groups 2 and 4 while diameter of LV myocytes was significantly greater in groups 2 and 4 than in groups 1 and 3, and in group 4 than in group 2. The study reveals that prolonged high sodium consumption increases fluid and electrolyte turnover both in the sham and in the MI rats and that the MI causes decrease in food and sodium intake in rats on high but not on regular sodium intake. In addition high sodium diet promotes development of greater post-MI hypertrophy of the LV myocytes.  相似文献   

3.
It was previously shown that sodium nitroprusside (NP) stimulates food (FI) and water (WI) intakes when injected intraperitoneally (i.p.) in male rats deprived for 1-h of both food and water during day time. The present work shows that: 1) intramuscular NP increased only water intake; 2) when NP was i.p. injected simultaneously without 1-h deprivation it slightly reduced both intakes in the first 30 min but stimulated significantly FI between 30 and 60 min, and 3) it increased significantly FI even in absence of available water, while WI in absence of food was practically not affected. In conclusion NP effect on FI does originate mainly in the splanchnic area, it requires a latency of about 30 min, and stimulation of FI by NP triggers an increase in WI and not the other way around.  相似文献   

4.
Chronic (2 h/d x 8 weeks) exposure to magnetic field (MF; 50 Hz, 17.9 microT) in complete spinal cord (T13) transected rats restored food intake (FI), water intake (WI) and body weight (BW) which were decreased in the spinal cord injured rats. The results suggest a significant beneficial effect of chronic exposure to magnetic field of paraplegic rats.  相似文献   

5.
Rats drank rapidly when 0.3 M NaCl was the only drinking fluid available after overnight water deprivation, consuming approximately 200 ml/24 h. Although such large intakes of this hypertonic solution initially elevated plasma osmolality, excretion of comparable volumes of urine more concentrated than 300 meq Na(+)/l ultimately appears to restore plasma osmolality to normal levels. Rats drank approximately 100 ml of 0.5 M NaCl after overnight water deprivation, but urine Na(+) concentration (U(Na)) did not increase sufficiently to achieve osmoregulation. When an injected salt load exacerbated the initial dehydration caused by water deprivation, rats increased U(Na) to void the injected load and did not significantly alter 24-h intake of 0.3 or 0.5 M NaCl. Rats with lesions of area postrema had much higher saline intakes and lower U(Na) than did intact control rats; nonetheless, they appeared to osmoregulate well while drinking 0.3 M NaCl but not while drinking 0.5 M NaCl. Detailed analyses of drinking behavior by intact rats suggest that individual bouts were terminated by some rapid postabsorptive consequence of the ingested NaCl load that inhibited further NaCl intake, not by a fixed intake volume or number of licks that temporarily satiated thirst.  相似文献   

6.
Food intake (FI), water intake (WI), urine output (UO), Na+ and K+ excretions were investigated for 2 days at 4-h intervals during continuous infusion of saline or vasopressin (VP) 1.0 UI/day, in male Brattleboro vasopressin-deficient rats. Continuous VP infusion reduced significantly 24-h amounts of WI and UO, and increased Na+ excretion. A significant (3.5 h) phase advance of the circadian rhythm of WI was observed, while the group circadian rhythm of Na+ excretion was eliminated due to irregular phase shifts in the different rats. The results suggest that VP do not play a role in the generation of the circadian rhythms of water input and output, but it may participate in their internal synchronization.  相似文献   

7.
Twenty-four hour basal food and water intakes were recorded in Wistar rats. Diabetes was produced in a group of rats by injecting streptozotocin (STZ, 75 mg/kg, b.w., IP) and their post-diabetic basal food and water intakes were recorded. Noradrenaline (2 microg) and dopamine (2 microg) were injected separately into the nucleus accumbens through the implanted cannula in non-diabetic and diabetic animals and their 24 hr food and water intakes were recorded. Food and water intakes were also recorded following bilateral electrolytic lesions of nucleus accumbens in both the groups of rats. In diabetic rats, basal food and water intakes were significantly increased in comparison to basal intakes of non-diabetic rats. Following injection of noradrenaline, a significant increase in water intake but not food intake was seen in non-diabetic rats, whereas food and water intakes remained unchanged in diabetic rats. Following injection of dopamine, a significant increase in food and water intakes was observed in non-diabetic rats, whereas dopamine-induced increase in food intake was absent in diabetic rats. The bilateral lesions of nucleus accumbens resulted in a significant inhibition of food and water intakes in non-diabetic rats, whereas inhibition of water intake without change in food intake observed in diabetic rats. However, no difference was observed in the pattern of change in water intake following lesions or dopamine injections between non-diabetic and diabetic rats, whereas difference was observed for food intake. The results suggest that nucleus accumbens activity changes for food intake, but not for water intake in diabetes.  相似文献   

8.
The acute natriuretic response to atrial peptides (AP) is highly variable in anesthetized rats, and some rats are unresponsive. To determine if this response to AP was affected by dehydration, we measured hematocrit, plasma volume, and natriuresis (delta UNaV) after intravenous injection of 3 micrograms/kg of rat atriopeptin III (rAPIII) in anesthetized rats deprived of water for 0, 12, 20, 29, 44, and 68 hours. Data were compared with those from rats receiving 1.5 mg/kg furosemide (FU) after 0 and 68 hours without water. There were 10- and 3-fold decreases in delta UNaV following rAPIII and FU injection after 20 and 68 hours without water, respectively. Hematocrit increased and plasma and total blood volumes decreased after 12 hours of dehydration. Plasma volumes and delta UNaV were correlated (r = 0.64, p less than 0.05; r = 0.75, p less than 0.001) in the combined groups receiving rAPIII (n = 30) and FU (n = 10), respectively. These results demonstrate that a relatively short period of water deprivation (WD) and the resulting hemoconcentration in rats decreased their acute natriuretic response to diuretics. Thus, differences in water intake may account for some of the large variation in delta UNaV after exogenous administration of rAPIII.  相似文献   

9.
TGR(mREN2)27 (TGR) rats are transgenic animals with an additional mouse renin gene, which leads to overactivity of the renin-angiotensin system. Adult TGR rats are characterized by fulminant hypertension, hypertensive end-organ damage, and an inverse circadian blood pressure pattern. To study the ontogenetic development of cardiovascular circadian rhythms, telemetric blood pressure transmitters were implanted in male Sprague-Dawley (SPRD, n = 5) and heterozygous, transgenic TGR rats before 5 weeks of age. The TGR received either drinking water or enalapril 10 mg/L in drinking water (n = 5 per group). Drug intake was measured throughout the study by computerized monitoring of drinking volume. Circadian patterns in blood pressure and heart rate were analyzed from 5 to 11 weeks of age. In the first week after transmitter implantation, blood pressure did not differ among SPRD, untreated, and enalapril-treated TGR rats. In parallel with the rise in blood pressure of untreated TGR rats, a continuous delay of the circadian acrophase (time of fitted blood pressure maximum) was observed, leading to a complete reversal of the rhythm in blood pressure at an age of 8 weeks. Enalapril reduced blood pressure at night, but was less effective during the day, presumably due to the drinking pattern of the animals, which ingested about 90% of their daily water intake during the nocturnal activity period. After discontinuation of treatment, blood pressure returned almost immediately to values found in untreated TGR rats. In conclusion, the inverse circadian blood pressure profile in TGR rats develops in parallel with the increase in blood pressure. Direct effects of the brain renin-angiotensin system may be involved in the disturbed circadian rhythmicity in TGR(mREN2)27 rats.  相似文献   

10.
A lesion of the subfornical organ (SFO) may disrupt drinking after a meal of dry chow as it does drinking after intragastric administration of hypertonic saline. Food and water intakes of SFO-lesioned (SFOX) and sham-lesioned rats were measured during 90-min tests following various lengths of food deprivation. During the tests, all rats began eating before they began drinking. After 20-24 h of food deprivation, latency to begin drinking after eating had started was longer for SFOX than for sham-lesioned rats. Plasma osmolality was elevated by 2-3% in both lesion groups at 12 min, the latency for sham-lesioned rats to drink, but SFOX rats nevertheless continued eating and delayed drinking. Eating after shorter 4-h food deprivations and ad libitum feeding produced more variable drinking latencies and less consistent effects of SFO lesion. During 24 h of water deprivation, SFO lesion had no effect on the suppression of food intake and did not affect food or water intakes during the first 2 h of subsequent rehydration. These findings indicate that the SFO is involved in initiating water intake during eating and in determining drinking patterns and the amount of water ingested during a meal.  相似文献   

11.
Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions.  相似文献   

12.
Aminoglutethimide (AG: 750 mg/day) was administered to a patient with idiopathic hyperaldosteronism (IHA) and circadian rhythms in urinary excretion of sodium (UNaV), potassium (UKV), aldosterone (AER) and 17-OHCS were analyzed by the single cosinor method. Urine was collected every 4h for 24h on the day before and on the 1st, 3rd and 7th day of AG administration, and above variables in each sample were determined. Circadian rhythms of 14 patients with primary aldosteronism (PA) who served as controls were also analyzed. In the present case, circadian acrophases in UNaV and AER studied before AG administration occurred at 22(19) and 07(05), respectively. They were similar to those of preoperative PA-patients. Circadian acrophase in UNaV occurred earlier with AG administration and on the 7th day it was at 14(05), a value similar to that of postoperative PA-patients. Circadian mesor in AER decreased remarkably from 4.1 to 0.6 micrograms/4h with AG administration, as did circadian mesor in UKV, whereas circadian mesor and acrophase in 17-OHCS did not change. Thus, the circadian characteristics in urinary variables in the present IHA-case were pathophysiologically similar to those of PA.  相似文献   

13.
Transgenic rats [TGR(A1-7)3292] present a chronic 2.5-fold increase in plasma Angiotensin-(1-7) [Ang-(1-7)] concentration. In the present study, we investigated the effects of this chronic elevation on renal function, vasopressin levels, kidney morphology, expression of Ang-(1-7) and vasopressin receptors in TGR(A1-7)3292. Urine volume and water intake were measured for 24 h. At the end of this period, plasma and urine samples were collected to evaluate renal function parameters and circulating vasopressin levels. Expression of renal V2 receptors and Mas was assessed by ribonuclease protection assay. Renal slices were processed for histological analysis. The urine flow of TGR(A1-7)3292 was significantly lower in comparison with Sprague-Dawley rats. The reduced urine volume of TGR(A1-7)3292 was accompanied by a significant increase in urinary osmolality and decrease free water clearance. Glomerular filtration rate, urinary sodium and potassium excretion were similar in both strains. No significant changes were observed in vasopressin levels as well as in V2 receptor and Mas mRNA expression in renal tissue. No changes in kidney structure of TGR(A1-7)3292 were detected. These data suggest that changes in circulating renin-angiotensin system produced by chronic increase of Ang-(1-7) levels can lead to adjustments in the water balance that are independent of vasopressin release and V2 receptor expression.  相似文献   

14.
To investigate whether prolonged water immersion (WI) results in reduction of central blood volume and attenuation of renal fluid and electrolyte excretion, these variables were measured in connection with 12 h of immersion. On separate days, nine healthy males were investigated before, during, and after 12 h of WI to the neck or during appropriate control conditions. Central venous pressure, stroke volume, renal sodium (UNaV) and fluid excretion increased on initiation of WI and thereafter gradually declined but were still elevated compared with control values at the 12th h of WI. Atrial natriuretic peptide (ANP) concentration in plasma initially increased threefold during WI and thereafter declined to preimmersion levels, whereas plasma renin activity, plasma aldosterone, and norepinephrine remained constantly suppressed. It is concluded that, compared with the initial increases, central blood volume (central venous pressure and stroke volume) is reduced during prolonged WI and renal fluid and electrolyte excretion is attenuated. UNaV is still increased at the 12th h of WI, whereas renal water excretion returns to control values within 7 h. The WI-induced changes in ANP, plasma renin activity, plasma aldosterone, and norepinephrine may all contribute to the initial increase in UNaV. The results suggest, however, that the attenuation of UNaV during the later stages of WI is due to the decrease in ANP release.  相似文献   

15.
In this study, we aimed to investigate the adaptation of blood pressure (BP), heart rate (HR), and locomotor activity (LA) circadian rhythms to light cycle shift in transgenic rats with a deficit in brain angiotensin [TGR(ASrAOGEN)]. BP, HR, and LA were measured by telemetry. After baseline recordings (bLD), the light cycle was inverted by prolonging the light by 12 h and thereafter the dark period by 12 h, resulting in inverted dark-light (DL) or light-dark (LD) cycles. Toward that end, a 24-h dark was maintained for 14 days (free-running conditions). When light cycle was changed from bLD to DL, the acrophases (peak time of curve fitting) of BP, HR, and LA shifted to the new dark period in both SD and TGR(ASrAOGEN) rats. However, the readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. The LA acrophases changed similarly in both strains. When light cycle was changed from DL to LD by prolonging the dark period by 12 h, the reentrainment of BP and LA occurred faster than the previous shift in both strains. The readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. In free-running conditions, the circadian rhythms of the investigated parameters adapted in TGR(ASrAOGEN) and SD rats in a similar manner. These results demonstrate that the brain RAS plays an important role in mediating the effects of light cycle shifts on the circadian variation of BP and HR. The adaptive behavior of cardiovascular circadian rhythms depends on the initial direction of light-dark changes.  相似文献   

16.
Increased dietary salt intake was used as a nonpharmacological tool to blunt hypotension-induced increases in plasma renin activity (PRA) in order to evaluate the contribution of the renin-angiotensin system (RAS) to hypotension-induced thirst. Rats were maintained on 8% NaCl (high) or 1% NaCl (standard) diet for at least 2 wk, and then arterial hypotension was produced by administration of the arteriolar vasodilator diazoxide. Despite marked reductions in PRA, rats maintained on the high-salt diet drank similar amounts of water, displayed similar latencies to drink, and had similar degrees of hypotension compared with rats maintained on the standard diet. Furthermore, blockade of ANG II production by an intravenous infusion of the angiotensin-converting enzyme inhibitor captopril attenuated the hypotension-induced water intake similarly in rats fed standard and high-salt diet. Additional experiments showed that increases in dietary salt did not alter thirst stimulated by the acetylcholine agonist carbachol administered into the lateral ventricle; however, increases in dietary salt did enhance thirst evoked by central ANG II. Collectively, the present findings suggest that hypotension-evoked thirst in rats fed a high-salt diet is dependent on the peripheral RAS despite marked reductions in PRA.  相似文献   

17.
The transgenic rats TGR(ASrAOGEN) (TGR) with low levels of brain angiotensinogen were analyzed for cardiovascular reactivity to microinjections of ANG II and angiotensin receptor (AT(1)) antagonists [CV-11974, AT(1) specific; A-779, ANG-(1--7) selective; sarthran, nonspecific] into the rostral ventrolateral medulla (RVLM) of conscious rats. Microinjection of ANG II resulted in a significantly higher increase in the mean arterial pressure (MAP) of TGR than control [Sprague-Dawley (SD)] rats, suggesting an upregulation of ANG II receptors in TGR. CV-11974 produced an increase in MAP of SD but not in TGR rats. A-779 produced a depressor response in SD but not in TGR rats. Conversely, sarthran produced a similar decrease of MAP in both rat groups. The pressor effect of the AT(1) antagonist may indicate an inhibitory role of AT(1) receptors in the RVLM. On the other hand, ANG-(1--7) appears to have a tonic excitatory role in this region. The altered response to specific angiotensin antagonists in TGR further supports the functionally relevant decrease in angiotensins in the brains of TGR and corroborates the importance of the central renin-angiotensin system in cardiovascular homeostasis.  相似文献   

18.
Male Brown Norway rats aged 4 mo (young) and 20 mo (old) received a series of experimental challenges to body fluid homeostasis over approximately 3 mo. Water was available for drinking in some tests, and both water and 0.3 M NaCl were available in others. The series included three episodes of extracellular fluid depletion (i.e., furosemide + 20 h of sodium restriction), two tests involving intracellular fluid depletion (i.e., hypertonic saline: 1 or 2 M NaCl at 2 ml/kg body wt sc), one test involving overnight food and fluid restriction, and testing with captopril adulteration of the drinking water (0.1 mg/ml) for several days. Old rats were significantly heavier than young rats throughout testing. Old rats drank less water and 0.3 M NaCl after sodium deprivation than young rats, in terms of absolute and body weight-adjusted intakes. Old rats drank only half as much water as young rats in response to subcutaneous hypertonic NaCl when intakes were adjusted for body weight. Old rats drank less 0.3 M NaCl than young rats after overnight food and fluid restriction when intakes were adjusted for body weight. In response to captopril adulteration of the drinking water, young rats significantly increased daily ingestion of 0.3 M NaCl when it was available as an alternative to water and significantly increased daily water intakes when only water was available, in terms of absolute and body weight-adjusted intakes. Old rats had no response to captopril treatment. These results add important new information to previous reports that aging rats have diminished thirst and near-absent salt appetite responses to regulatory challenges.  相似文献   

19.
After surgical removal of all salivary secretions ("desalivation"), rats increase their consumption of water while eating dry laboratory chow. In the present experiments, desalivated rats drank even more water while they ate "powdered" high-salt food (i.e., <15-mg food particles). The Na+ concentration of systemic plasma in these animals was not elevated during or immediately after the meal, which suggests that cerebral osmoreceptors were not involved in mediating the increased water intake. A presystemic osmoregulatory signal likely stimulated thirst because the Na+ and water contents of the gastric chyme computed to a solution approximately 150 mM NaCl. In contrast, desalivated rats drank much smaller volumes of water while eating "pulverized" high-salt food (i.e., 60-140-mg food particles), and the fluid mixture in the gastric chyme computed to approximately 280 mM NaCl solution. These and other findings suggest that the NaCl ingested in the powdered high-salt diet was dissolved in the gastric fluid and that duodenal osmoreceptors (or Na+-receptors) detected when the concentration of fluid leaving the stomach was elevated after each feeding bout, and promptly stimulated thirst, whereupon rats drank water until the gastric fluid was diluted back to isotonicity. However, when rats ate the pulverized high-salt diet, much of the NaCl ingested may have been embedded in the gastric chyme and therefore was not accessible to visceral osmoreceptors once it emptied from the stomach. Consistent with that hypothesis, fluid intakes were increased considerably when desalivated rats drank 0.10 M NaCl instead of water while eating either powdered or pulverized high-salt food.  相似文献   

20.
In normal rats food and water intakes are associated in terms of time and quantity and their diurnal rhythms are synchronized. Intake behavior in streptozotocin-induced diabetic rats (ID) with marked polyphagia and polydipsia and in diabetic rats with continuous insulin administration (IT) has been studied. The daily percentages of food and water intakes during the dark phase were lower in IT than in control rats (C), being even lower in ID rats. However, all three groups showed circadian rhythmicity in food intake, although with less amplitude in the ID and IT animals compared to the C ones. A loss of the normal circadian rhythm of water intake was observed in the ID rats and although the insulin administration recovered circadian rhythmicity, it did not restore the temporal relations between food and water intakes. These results may indicate that the circadian pattern of water intake is more influenced by insulin than food intake. The daily pattern of this hormone may play an important role in the circadian modulation of the homeostatic mechanisms integrating both intake behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号