首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructural analysis has revealed that metanephridia in Dero digitata arise from three nephroblast cells in the frontal epithelium of a septum suggesting its mesodermal origin. Each cell has a fixed developmental destination, one nephroblast cell produces the entire canal part and two cells give rise to the nephrostome. The nephroblast cell nearest to the body wall enlarges and proliferates a first set of canal cells, then one of the two proximally adjacent nephroblast cells differentiates into the envelope of the nephrostome generating the marginal cilia of the opening (mantle cell) and the second one transforms into the anteriormost cell of the funnel, producing a flame of cilia that beats into the canal lumen (flame cell). Thereafter, new canal cells appear, mainly by mitosis of the first cell, enlarging the body of the nephridium whose further differentiation was not analysed. Comparison with other clitellate species suggests a mantle cell (or some marginal cells) and a flame cell (or a central cell) to be special characters of the metanephridium in the stem species of the Clitellata and that, compared to many polychaete species, its early development assumes a special course by a precocious determination and arrangement of nephroblast cells, which, in both groups, probably originate from an identical mesodermal stem cell. Results further indicate that the nonclitellate Aeolosomatidae, by virtue of corresponding nephrostomata, are possibly closer related to the Clitellata.  相似文献   

2.
Analyses of rRNA and rDNA among Metazoa result in a hypothesis of a sistergroup relationship of Brachiopoda and certain spiralian taxa, whereas analyses of morphological data imply that Brachiopoda show affinities to Deuterostomia within the Radialia. Regarding Brachiopoda as a derived spiralian taxon must be followed by a reinterpretation of the evolution of distinct brachiopod morphological characters—like cleavage pattern, coelom or larva. The experimental insertion of a monophyletic taxon consisting of Brachiopoda and Phoronida into a widely accepted phylogenetic tree of Spiralia leads to the hypothesis that at least trimeric organization, mesosomal tentacular apparatus and heterogeneously assembled metanephridia are products of convergent evolution in Brachiopoda plus Phoronida and Deuterostomia. The hypothesis of a radialian nature of Brachiopoda and Phoronida, as implied by morphological data, remains as the most parsimonious possibility to explain the evolution of seven regarded characters (cleavage pattern, larva, tentacular apparatus, coelom, metameric segmentation, metanephridia and chaetae) in Brachiopoda. Due to the conflicting results of both methods a hitherto undetected systematical problem is discussed possibly hindering data comparability. If the course of evolution can principally be inferred from the information preserved in recent and fossil animals, the results should be congruent in the analyses of both, molecular and morphological data.  相似文献   

3.
Different developmental stages (trochophores, nectochaetae, non-mature and mature adults) of Anaitides mucosa were investigated ultrastructurally. A. mucosa has protonephridia throughout its life; during maturity a ciliated funnel is attached to these organs. The protonephridial duct cells are multiciliated, while the terminal cells are monociliated. The single cilium is surrounded by 14 microvilli which extend into the duct lumen without coming into any contact with the duct cells. Corresponding ultrastructure and development indicate that larval and adult protonephridia are identical in A. mucosa. Differences between various developmental stages can be observed only in the number of cells per protonephridium. A comparison between the funnel cells, the cells of the coelothel and the duct cells reveals that the ciliated funnel is a derivative of the duct. Due to the identical nature of the larval and postlarval protonephridia, such a funnel cannot be a secondary structure. In comparison with the mesodermally derived metanephridial funnel in phoronids it seems likely that the metanephridia of annelids and phoronids evolved convergently.  相似文献   

4.
Summary The ultrastructure of the epithelium on the oral surface of the tentacles ofOwenia fusiformis has been studied by light and electron microscopy. Unspecialized monociliated cells are the dominant cell type of the epithelium; however, biciliated epidermal cells, monociliated mucous cells and non-ciliated cells are also present. In all of the ciliated cells each cilium is provided with a diplosomal basal body and two striated rootlets. The cytological features of this unspecialized epithelium strongly resemble those of similar epithelia in the Phoronida, Brachiopoda and Hemichordata. So far,O. fusiformis is the only polychaete known to possess an unspecialized monociliated epidermis. Other characters ofOwenia are also mentioned. The relationship between the nervous system and the epidermal cells on the tentacles is examined. It is proposed thatOwenia should assume an important role in discussions of the phylogeny of the Polychaeta.I wish to thank Dr. R.M. Rieger for his inspiration and guidance during the course of this study. Ms. Wilma Hanton provided technical assistance for the electron microscopy. This work was supported by NSF Grant # GB-42211 to R.M. Rieger  相似文献   

5.
 Nephridial diversity is high in Phyllodocida (Annelida) and ranges from protonephridia to metanephridia. The nephridia of Tomopteris helgolandica (Tomopteridae) can be characterized as metanephridia which bear a multiciliated solenocyte. This cell is medially apposed to the proximal part of the nephridial duct and bears several cilia, each of which is surrounded by a ring of 13 microvilli. An extracellular matrix connects the microvilli and thus leads to the impression of a tube surrounding the central cilium. Each tube separately enters a subjacent duct cell and the cilia extend into a cup-shaped compartment within the duct cell. This compartment is not connected to the duct. The funnel consists of eight multiciliated cells and is connected to the nephridial duct, which initially runs intercellularly and later percellularly. The last duct cell bears a neck-like process which pierces the subepidermal basal membrane and is connected to epidermal cells forming a small invagination, the nephropore. The nephridia of T. helgolandica develop from a band of cells and all structural components are differentiated at an early developmental stage. Further development is characterized by enlargment of the funnel, ciliogenesis in the solenocyte, merging of different sections of the duct and, finally, the formation of the nephropore. An evaluation of the nephridia of T. helgolandica leads to the hypothesis that the nephridial diversity in Phyllodocida can be explained by the retainment of different stages in the transition of protonephridia into metanephridia; this is caused by the formation of a ciliated funnel at different ontogenetic stages. Although the protonephridia in Phyllodocida are regarded as primary nephridial organs, protonephridia are also presumed to have evolved secondarily in progenetic interstitial species of the Annelida by an incomplete differentiation of the nephridial anlage. Accepted: 18 December 1996  相似文献   

6.
D. Bunke 《Zoomorphology》1994,114(4):247-258
Summary The excretory system of Aeolosoma bengalense has been examined by light and electron microscopy. The system consists of seven serially arranged paris of metanephridia and six pairs of podocytes (referring to the first zoid of an animal chain). The podocytes surround blood spaces of the alimentary canal forming dorsoventrally running loops that emerge on both sides of it. The two elements of the system have a correlative position, each podocyte extending in close proximity to the funnel of a metanephridium. Only in the region of the first metanephridia are podocytes lacking. The nephrostome of the metanephridia consists of two cells, an inner one, the terminal duct cell, and an outer one enwrapping it, called the mantle cell. Nephrostomal cilia that extend into the coelomic space arise exclusively from the rim of the mantle cell whereas those of the terminal duct cell arranged on its luminal surface protrude into the canal forming a flame. The nephridial canal is ciliated throughout and is either intra- or extracellular. Its initial loops aggregate to form a compact organ, the nephridial body. The middle part of the duct constitutes a loop that ascends at each side of the alimentary canal where it is in intimate contact with its blood spaces. Ultrastructural features of the duct cells suggest a reabsorptive function in two regions, the nephridial body and the uppermost part of the loop. The terminal part of the duct passes through the nephridial body and opens ventrolaterally. Generally, the transverse vascular loops at the gut consist of one podocyte each. In the oesophageal region, where only one pair of podocytes is present, the loops connect the dorsal with the ventral longitudinal vessel. Three pairs of podocytes are present in the dilated region of the intestine emerging from its lateral wall and joining the median ventral vessel or blood spaces near by. In the hind gut, where two pairs of podocytes occur, the loops arise from the dorsolateral part and enter directly the ventral vessel. Cytological features of podocytes resemble those of other animals. The results are discussed on the basis of current theories on the function and the phylogenetic significance of excretory systems in the Annelida.Abbreviations bl basal lamina - bs blood space - bv blood vessel - cf ciliary flame - ci cilia - co connection of the vascular loop with the intestinal blood space - cu cuticle - db dense body - dc duct cell - di dictyosome - za zonula adhearens - dv dorsal vessel - ecb epicuticular body - ev endocytotic vesicle - ic intestinal cell - ici inner cilia - iv intestinal vessel - lm longitudinal muscle - mc mantle cell - mg midgut - mi mitochondrion - mv microvilli - nu nucleus - oci outer cilia - oe oesophagus - pc podocyte - pe pedicel - pel primary elongation of the podocyte - sm slit membrane - tc terminal duct cell - ve vesicle with heterogeneous contents - vv ventral vessel  相似文献   

7.
The microscopic anatomy and ultrastructure of nephridium have been studied in the sipunculan Thysanocardia nigra Ikeda, 1904 (Sipuncula, Sipunculidea) from the Sea of Japan using histological and electron microscopic techniques (SEM and TEM). This paper describes ultrastructural features of nephridial epithelium, muscle grid, and coelomic epithelium on the surface of the nephridium, the area of the ciliary funnel, and the tongue. Several types of cells were distinguished in the excretory tube of the nephridium: (1) a columnar epithelium of the excretory bunches; (2) a cubical or flattened epithelium of flask-shaped infoldings; and (3) granulocytes that migrate from the coelom to the extracellular matrix of the nephridial wall. The system of podocytes and multiciliary cells were described in the nephridial coelothelium. Two types of secretion of nephridial epithelium have been discovered: a merocrine secretion of columnar cells and an apocrine secretion of cells of the flask-shaped infoldings. Using ultrastructural data, two zones of filtration through the wall of excretory tube have been found, namely (1) the tips of flask-shaped infoldings (via the extracellular matrix and microvillary canals between the epithelial cells) and (2) areas between the flask-shaped infoldings (via the contacts of podocytes, extracellular matrix, and the basal labyrinth of the columnar cells). Unlike previously studied representatives of the genus Phascolosoma, no coelomic epithelium is present on the tips of the flask-shaped infoldings in Th. nigra. This data on the anatomy and histology allow us to conclude that the funnel only works like a gonoduct.  相似文献   

8.
Electron microscopic study of nephridial systems in three cyclophyllidean cestodes indicates a resemblance in their ultrastructure. The walls of longitudinal, transverse and collecting ducts show a very similar pattern of organization. The surface of the anucleate epithelium lining the ducts is developed into microvilli. A relatively thick layer of fibrillar tissue underlies the basal membrane of the microvillar epithelium. The nucleated portions or "pericaryons", situated between the parenchymal cells, are directly connected with epithelium by cytoplasmic prolongations. The canalicular lumen extends through a single series of cells curved into a ring. The epithelial surface of the canalicular wall is developed into short, densly staining microvilli and the immediately underlying fibrillar tissue appears very compact. The cilia were never observed in any of the above ducts. The ultrastructure of protonephridia proper is comparable with those already described in other cestodes. There is a close association between the flame-cell and the cancalicular ending, enlarged into a nephridial funnel. A single row of nephridial rods of the flame-cell is surrounded by a row of digitiform prolongations of the nephridial funnel border. The prolongations alternate with the rods and their interlocking pattern appears clearly in cross-sections. A series of minute pores or "nephrostomes" providing a direct contact between the nephridial chamber and intercellular space of the paranchyma was shown. The problem of classification and definition between the "closed" protonephridia and open metanephridia is discussed. The structural unity of protonephridia in different groupes of Platyhelminthes is reviewed. The different number of flagella within the "flames" of different cestodes is compared and analyzed. The ultrastructural characteristics of duct-wall epithelium provides some confirmation of its high metabolic activity.  相似文献   

9.
D. Bunke 《Zoomorphology》2000,120(1):39-46
The composition and arrangement of cells in the preseptal region of metanephridia have been examined by ultrastructural methods in two naidid species, Nais variabilis and Dero digitata. Within this region special attention has been paid to the portion around the orifice and the region where the metanephridium penetrates the septum. In N. variabilis, the preseptal region is composed of four cells and, in D. digitata, three cells are present. In both species three cells correspond in position and ultrastructural details and, hence, are interpreted as homologous. These are the mantle cell, the flame cell, and the canal cell. The mantle cell covers the preseptal region and surrounds the opening. The margin around the orifice is endowed with cilia, which extend into the coelomic space and beat irregularly. They do not enter the orifice and, thus, are not part of the internal ciliary flame. Posteriorly, in D. digitata, the mantle cell originates from the septal wall, i.e., its extensions spread in the plane of the frontal coelothelium of the septum. In N. variabilis, the mantle cell is continued by a further cell, enwrapping the posterior region of the preseptal part. This cell, called the septal cell, is anchored in the septal wall like the mantle cell in D. digitata. Both cells are interpreted as mesodermal components of the metanephridium. The flame cell lies beneath the mantle cell. In front, on its dorsal wall, many cilia are inserted which extend posteriorly into the nephridial canal forming a flame. In D. digitata, the caudal extension of this cell was examined in more detail; it originates from an intraseptal position. The canal cell lines the anterior lumen of the nephridial duct. While the mantle cell and flame cell enclose the organ from a dorsal position, the canal cell lies opposite embracing the lumen from a ventromedial position. Behind, it extends into the postseptal region for a certain distance. It is concluded that metanephridia in the Clitellata have a coelothelial component and, probably, are not just descendants of a single cell, the nephridioblast. The results further indicate that a flame cell and a mantle cell or some corresponding coelothelial cells may be constitutive elements of the ground plan of the clitellate metanephridium. Phylogenetic consequences for non-clitellate Annelida are discussed. Accepted: 21 December 1999  相似文献   

10.
Dieter Bunke 《Zoomorphology》1998,118(3):177-182
 The nephrostome of Enchytraeus albidus exhibits a longitudinal slit-like opening on the dorsal side of a bulbous organ which is mainly composed of three cells, one flame cell situated centrally and endowed with a ciliary flame, and two cells lying superficially, called the mantle cell and the accessory mantle cell. The mantle cell occupies the ventral side of the organ extending on both sides up to the opening to constitute its immediate border on the frontal and lateral sides. Here it forms a kind of crest which is heavily subdivided into many protrusions and infoldings endowed with long cilia which exclusively spread into the coelomic cavity. The accessory mantle cell borders the narrow posterior slit of the opening, forming the roof of the initial canal which is devoid of cilia. From its anterior region a projection arises extending above the opening. The flame cell forms a groove from which the ciliary flame arises which extends into the canal. At its posterior region it replaces the accessory mantle cell displacing it onto the dorsal surface of the organ. It is argued that the mantle cell and the accessory mantle cell have presumbly originated from coelothelial cells. Thus the metanephridium may be a composite organ developing from a nephridioblastic and a coeloblastic source. A discussion of results in other annelid species indicates that metanephridia in the Annelida may have evolved more than once. Accepted: 13 October 1997  相似文献   

11.
Protonephridia and Metanephridia - their relation within the Bilateria   总被引:3,自引:0,他引:3  
Two different kinds of nephridia occur within the Bilateria, protonephridia closed up by a terminal cell and metanephridia opening into the coelomic cavity. Both initially filter and subsequently modify intercellular fluids. Whereas metanephridia are strictly correlated to a coelom, proto-nephria occur in acoelomate as well as in coelomate organisms. Protonephridia of different bilaterian taxa correspond to each other in several structural features. Therefore, it is hypothesized that protonephridia are homologous organs throughout the Bilateria. They must have evolved once as one pair of monociliated organs orinatinng from the ectoderm and consistin of one terminal, one duct and one nephropore cell In the ground pattern of the Bilateria the cilium of the terminal cell has only one rootlet and is surrounded by resumably eight strengthened and elongated microvilli. Cilium and microvilli extend into the hollow cyinder of the terminal cell, which is oriented distally and is attached to the adjacent duct cell by desmosomes. This cylinder is perforated by clefts and represents the supporting structure of the filtration barrier consisting of extracellular matrix. In the Annelida and Phoronida, the metanehridia at the postlarval stages are ontogenetically preceded by protonephridia in the larva, but far reaching structural and developmental differ ences exist between the metanephridia of both. In horonids the rotonephrdial duct of the larva is retained in the postlarva and acquires a coelothelially derived funnel, whereas in annelids the metanephridia are uniform organs orihating from a solid anlage, which is a repetition of the protonehridial anlage of the larva. The differences contradict a homology of the metanephridia in Annegda and Phoronida. We therefore have to conclude that metanephridia must have evolved indeendently, at least two times. The comparative analysis of nephridia in the Bilateria allows the following hyothesis: Pro tonephridia were evolved in a monohasic acoelomate organism in the stem fineage of the Bilateria. During the evolution of biphasic life cycles consisting of an acoelomate larva and a coelomate adult, the information about the differentiation of protonephridia has been preserved in the early acoelomate developmental (larval) stages. During postlarval development and the formation of a coelom the protonephridia have either been retained or modified into meta nephridia. Accordin to the differences between the metanehridia of phoronids and annelids, we emphasize that. tiere is no possibility to trace back all bilaterian taxa with a coelom to a common stem species.  相似文献   

12.
Abstract. The hypothesis of a common ancestry of the lophophorate taxa Brachiopoda, Bryozoa, Phoronida, and the Deuterostomia can be traced back to the late 19th century when Masterman recognized a tripartite organization of the body consisting of pro-, meso-, and metasome, along with coelomic body cavities in each compartment, as characteristic for Echinodermata, Pterobranchia, Phoronida, and Brachiopoda. This idea became quite popular under the name "archicoelomate" concept. The organization of the phoronids, and especially of their transparent actinotroch larva, has for a long time been used as a touchstone for the validity of this concept. As a coelomic lining can reliably be recognized only on the ultrastructural level, this technique has been applied for adults of Phoronis ovalis , which is assumed to be a sister species to all other phoronids. Phoronis ovalis contains only two coelomic compartments, a posterior coelom inside the trunk (metasoma), occupying the space between the trunk epidermis and the digestive epithelium, and an anterior lophophoral coelom inside and basal to the tentacular crown (mesosoma). There is no coelomic cavity inside the epistome (prosoma). This part of the body is filled with myoepithelial cells, which are continuous with the epithelial lining of the lophophore cavity. These cells form a lumenless bilayer and possess long, tiny myofilamentous processes, which are completely embedded in an extracellular matrix. A comparison with data on P. muelleri shows that there is no need to assume three different coelomic cavities in Phoronida, in contrast to the predictions of the archicoelomate concept. At least for this taxon, a correspondence to the situation in deuterostomes can hardly be found.  相似文献   

13.
Summary The nephridia of Ophryotrocha puerilis are segmental organs. The nephrostome opens at the posterior margin of a setigerous segment into the coelomic cavity of this segment. The nephridial canal is made up of about 15 cells. These cells form an S-shaped tubule which extends into the following segment. The lumen of the nephridial canal ranges from 2 to 7 m in diameter. The nephropore opens laterally on the ventral surface of the body wall.In cross sections, one, two, or three cells are seen forming the canal. The inner surfaces of the canal cells are of different appearances along the canal. Since no regular pattern of cell distribution was found along the canals of different nephridia it is assumed that changes in cell structure along the canal are due to functional states or properties rather than to anatomically fixed regional differences. The canal cells either show smooth contours or they form brush borders of microvilli or sponge-like inner surfaces with a system of vacuolar canals running through the cytoplasm. Most of the canal cells are filled with various kinds of vesicles. Usually two or three cells contain larger vesicles up to 2.5 m in diameter with more or less electron-dense contents. Some of these vesicles resemble lysosomes. There are at least three bundles of cilia in each canal. In young specimens the number of cilia in one bundle is smaller (10–15) than in adult specimens (60–70). The nephridia do not show sex specific differences. The female nephridia do not function as genital ducts. As judged from the sizes of sperm and nephridia it appears to be possible that sperm are shed via male nephridia.  相似文献   

14.
Regional cytology and cytochemistry of the crayfish kidney tubule   总被引:3,自引:0,他引:3  
Cytological and cytochemical methods were used to identify and characterzie six distinct regions of the crayfish kidney: coelomosac, labyrinth I and II, and nephridial canal I, II, and III. Cells of the coelomosac possess cytoplasm which is strongly PAS-positive, but poor in RNA and protein. Their nuclei possess unusual projections which extend to the basal plasmalemma. Labyrinth I contains columnar cells rich in glycogen. Labyrinth II is characterized by a distended lumen and by shorter cells with high cytoplasmic RNA, many possessing a large intracellular vacuole. A PAS-positive brush border is unique to the two portions of the labyrinth. Cells in the nephridial canal show strong reactions for RNA and Mg++-dependent ATPase. In nephridial canal I and II, cells are flattened to cuboidal with the lumen being more distended in nephridial canal I than anywhere else in the tubule. In nephridial canal III, the cells are large and columnar, and the cytoplasmic RNA concentration is greatest apically. Nuclei in all regions of the tubule epithelium, except coelomosac, are large and react strongly for protein. Coelomosac nuclei and those in blood cells are condensed and contain little protein. The cytoplasm of blood cells displays a significant amount of RNA, and traces of polysaccharide material. These observations demonstrate the presence of highly specialized morphological and histochemical alterations along the length of the kidney tubule and indicate sequential modification of urine in the lumen. Evident morphological and cytochemical likenesses between analogous regions of the mammlian nephron and the crayfish kidney tubule suggest that basic physiological similarities may also exist.  相似文献   

15.
大珠母贝外套膜表皮细胞的超微结构   总被引:8,自引:0,他引:8  
杜晓东 《动物学报》1999,45(3):246-251
利用透射电系统地观察大珠母贝的外套有皮细胞,结果表明,细胞可分为5种,即柱状表皮细胞、凸细胞、电子透明大粒细胞、电子稠密粒细胞和电子透明小粒细胞。它们在不同区域的分布、形态和数量变化与外套膜的功能分化密切相关,尤其是与贝壳组分的分泌有关。结缔组织中也分布着许多闰细胞和电子稠密粒细胞,它们可作变形运动进入表皮层。  相似文献   

16.
Summary The mature male nephridia ofPolydora ligni andP. websteri (Polychaeta: Spionidae) are segmental organs composed of a ciliated nephrostome connected to a nephridial canal that crosses the intersegmental septum, expands into a large modified part extending dorsally through the coelom and subsequently narrows into a canal terminating in a dorsal nephridiopore. The nephridial canal is ciliated throughout and is composed of several cell types. Cells in the expanded region of the nephridia of both species contain large urn-shaped depressions filled with long microvilli. InP. ligni, one section of a nephridium contains cells packed with electron-dense granules that are not observed inP. websteri.The spermatophores ofPolydora ligni are composed of a central sperm mass surrounded by a layer of randomly oriented tubules that form a capsule around the sperm and taper into a long thin tail. These tubules are identical in dimensions to the microvilli present in parts of a nephridium and apparently are derived from these microvilli. The spermatophore capsule ofP. websteri is composed of similar tubules also presumed to originate from nephridial microvilli.The microvilli in nephridia of both species are surrounded with a glycocalyx that may function as an adhesive to hold the spermatophore capsule together. This glycocalyx may also function as a species specific message when encountered by a receptive female.Contribution Number 179 from Harbor Branch Foundation, Inc.  相似文献   

17.
Among other characteristics a trimeric coelomic compartmentation consisting of an anterior protocoel, followed by a mesocoel and a posterior metacoel is traditionally believed to substantiate the sister-group relationship between Lophophorata and Deuterostomia, together forming the Radialia. As molecular data cannot support this hypothesis a reanalysis of the coelomic cavities in Phoronida is undertaken, because corresponding coelomic compartmentation is widely accepted to support the Radialia hypothesis. A coelomic cavity can be recognized on the ultrastructural level because its lining is a true epithelium with polarized cells interconnected by apical adherens junctions. This study reveals that neither in larval nor adult Phoronis muelleri (Phoronida) an anterior cavity with such a lining is present. What on the light microscopic level leads to the impression of a cavity inside the larval episphere, actually is an enlarged subepidermal extracellular matrix with an amorphous, presumably gel-like filling, into which several muscle cells are embedded. Larvae, thus, possess only one coelomic cavity, the large trunk coelom of the larva which is adopted in the adult organization. The second coelomic cavity of adult P. muelleri, the lophophore coelom, develops as a double-layer of epithelialized mesodermal cells at the base of the adult tentacle buds and becomes fluid filled during metamorphosis. Like the larval episphere, larval tentacles and most parts of the blastocoel are filled by an amorphous matrix. Reanalysis of the literature and comparison with Brachiopoda and Bryozoa allows the hypothesis that a protocoel is lacking in all Lophophorata, and that merely two unpaired coelomic cavities, one tentacle and one trunk coelom, can be assumed for the ground pattern of this taxon. These results do not provide further evidence for the Radialia hypothesis, but also do not contradict it. Accepted: 28 August 2000  相似文献   

18.
The microscopic anatomy and ultrastructure of the nephridia of the sipunculan Themiste hexadactyla (Satô, 1930) from the Sea of Japan were studied by the histological and electron microscopic methods. The fine structures of the ciliary funnel, muscular “tongue,” excretory sac, and excretory tube of the nephridium were described. The ultrastructural features of the excretory epithelium, cupola-shaped epithelial infoldings, excretory canals, and muscular layer in the extracellular matrix of the nephridial wall were examined and described in detail. The ultrastructure of the nephridial coelomic epithelium composed of podocytes with long processes and multiciliary cells was also examined and illustrated. Characteristic cell contacts between the processes of podocytes, viz., paired “double diaphragms,” were described and illustrated for the first time.  相似文献   

19.
In early developmental stages of Erpobdella octoculata two pairs of transitory nephridia occur which degenerate during the formation of the body segments. Because in the ground pattern of Annelida the first nephridia formed during ontogenesis are protonephridia, it can be assumed that the transitory nephridia of E. octoculata are homologous to the larval protonephridia (head kidneys) of Polychaeta. To test this hypothesis two cryptolarvae of E. octoculata were investigated ultrastructurally. Both pairs of transitory nephridia are serially arranged to either side of the midgut vestigium. Each organ consists of a coiled duct that opens separately to the exterior by an intraepidermal nephridiopore cell. The duct is percellular and formed by seventeen cells. Adluminal adherens and septate junctions connect all duct cells; the most proximal duct cell completely encloses the terminal end of the duct lumen. A filtration structure characteristic for protonephridia is lacking. Additionally, the entire organ lacks an inner ciliation. Morphologically and ultrastructurally the transitory nephridia of E. octoculata show far reaching congruencies with the segmental metanephridia in different species of the Hirudinea. These congruencies support the assumption that formation of transitory nephridia and definitive metanephridia in Hirudinea depends on the same genetic information. The same inherited information is assumed to cause the development of larval head kidneys and subsequently formed nephridia in different species of the Polychaeta. Thus, the presumed identical fate of a segmentally repeated nephridial anlage supports the hypothesis of a homology between the transitory nephridia in Hirudinea species and the protonephridial head kidneys in the ground pattern of the Polychaeta. We, therefore, assume that functional constraints lead to a modification of the protonephridial head kidneys in Hirudinea and explain ultrastructural differences between the transitory nephridia in Hirudinea and the protonephridia in Polychaeta. Accepted: 11 December 2000  相似文献   

20.
The study was supposed to determine whether leucine-enkephalin (leu-Enk) or delta opioid receptor was presented in mantles and feet of the Octopus Octopus ocellatus. The results showed that they were found in the mantles, wrists, interbrachial membrane, and funnels of the Octopus Octopus ocellatus. The immunoreactivities of leu-Enk and delta opioid receptor were observed in the epithelial cells of dorsal mantle, wrist and interbrachial membrane. Strong one was presented in both the connective tissue which was close to the epithelium of dorsal mantle, wrist and interbrachial membrane and a small amount of connective tissue cells and nerve fibers, while less positive in other parts. A little of immunoreactive material was also observed in the ventral mantle and funnel, for example, weak one was in the epithelial tissue, the adjacent cells and nerve fibers. The different densities of leu-Enk and delta opioid receptor in mantles and feet of the Octopus O. ocellatus may be related to the different functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号