首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Glutenin subunits from nullisomic-tetrasomic and ditelocentric lines of the hexaploid wheat variety ‘Chinese Spring’ (CS) and from substitution lines of the durum wheat variety ‘Langdon’ were fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) at 70 °C using a gradient of acetonitrile in the presence of 0.1% trifluoroacetic acid. Nineteen subunits were detected in CS. The presence and amounts of four early-eluted subunits were found, through aneuploid analysis, to be controlled by the long arms of chromosomes 1D (1DL) (peaks 1–2) and 1B (1BL) (peaks 3–4). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that these four subunits are the high molecular weight subunits of glutenin, which elute in the order 1Dy, 1Dx, 1By, and 1Bx. Similar amounts of 1DL subunits were present (6.3 and 8.8% of total glutenin), but 1BL subunits differed more in abundance (5.4 and 9.5%, respectively). Results indicate that most late-eluting CS glutenin subunits were coded by structural genes on the short arms of homoeologous group 1 chromosomes: 6 by 1DS, 5 by 1AS, and 4 by 1BS. Glutenin of tetraploid ‘Langdon’ durum wheat separated into nine major subunits: 6 were coded by genes on 1B chromosomes, and 3 on 1A chromosomes. Gene locations for glutenin subunits in the tetraploid durum varieties ‘Edmore’ and ‘Kharkovskaya-5’ are also given. These results should make RP-HPLC a powerful tool for qualitative and quantitative genetic studies of wheat glutenin. The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned Stationed at the Northern Regional Research Center, Peoria.  相似文献   

2.
While quality in hexaploid wheat (Triticum aestivum L. em Thell.) is a very complex trait, it is known that the water-insoluble gluten proteins are responsible for the elasticity and chohesiveness (strength) of dough and are therefore important determinants of breadmaking quality. High-molecular-weight (HMW) glutenin subunits encoded by genes on the long arm of group 1 chromosomes have been associated with gluten strength, and a portion of the variability between cultivars can be attributed to glutenin subunit composition. Good or poor wheat breadmaking quality is associated with two allelic pairs at the Glu-D1 complex locus, designated 1Dx5–1Dy10 and 1Dx2–1Dy12, respectively. Among the HMW glutenin subunits encoded at Glu-B1, Bx7 is quite common, being associated with either of two subunits, By8 or By9. Both allelic pairs contribute moderately well to good breadmaking quality by increasing dough elasticity. Glutenin subunit screening is accomplished using electrophoresis (SDS-PAGE). In this paper, I report the development of an alternative screening method based on glutenin genes themselves using the polymerase chain reaction (PCR). This easy, quick and non-destructive PCR-based approach is an efficient alternative to standard procedures for selecting bread-wheat genotypes with good breadmaking characteristics. Received: 14 August 1999 / Accepted: 21 March 2000  相似文献   

3.
New DNA markers for high molecular weight glutenin subunits in wheat   总被引:2,自引:0,他引:2  
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers, UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The 16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes.  相似文献   

4.
Wheat quality depends on protein composition and grain protein content. High molecular weight glutenin subunits (HMW-GS) play an important role in determining the viscoelastic properties of gluten. In an attempt to improve the bread-making quality of hexaploid wheat by elaborating novel HMW-GS combinations, a fragment of wheat chromosome 1D containing the Glu-D1 locus encoding the Dx2+Dy12 subunits was translocated to the long arm of chromosome 1A using the ph1b mutation. The partially isohomoeoallelic line selected was characterized using cytogenetical and molecular approaches to assess the amount of chromatin introgressed in the translocated 1A chromosome. Triple-target genomic in situ hybridization indicated that the translocated 1A chromosome had a terminal 1D segment representing 25% of the length of the recombinant long arm. The translocation was also identified on the long arm using molecular markers, and its length was estimated with a minimum of 91 cM. Proteome analysis was performed on total endosperm proteins. Out of the 152 major spots detected, 9 spots were up-regulated and 4 spots were down-regulated. Most of these proteins were identified as α-, β-, γ-gliadins assigned to the chromosomes of homoeologous groups 1 and 6. Quantitative variations in the HMW-GS were only observed in subunit Dy12 in response to duplication of the Glu-D1 locus.  相似文献   

5.
Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits   总被引:23,自引:0,他引:23  
Wheat HMW glutenin subunit genes 1Ax1 and 1Dx5 were introduced, and either expressed or overexpressed, into a commercial wheat cultivar that already expresses five subunits. Six independent transgenic events were obtained and characterized by SDS-PAGE and Southern analysis. The 1Dx5 gene was overexpressed in two events without changes in the other endosperm proteins. Overexpression of 1Dx5 increased the contribution of HMW glutenin subunits to total protein up to 22%. Two events express the 1Ax1 subunit transgene with associated silencing of the 1Ax2* endogenous subunit. In the SDS-PAGE one of them shows a new HMW glutenin band of an apparent Mr lower than that of the 1Dx5 subunit. Southern analysis of the four events confirmed transformation and suggest that the transgenes are present in a low copy number. Silencing of all the HMW glutenin subunits was observed in two different events of transgenic wheat expressing the 1Ax1 subunit transgene and overexpressing the Dx5 gene. Transgenes and expression patterns were stably transmitted to the progenies in all the events except one where in some of the segregating T2 seeds the silencing of all HMW glutenin subunits was reverted associated with a drastic lost of transgenes from a high to a low copy number. The revertant T2 seeds expressed the five endogenous subunits plus the 1Ax1 transgene. Received: 16 June 1999 / Accepted: 29 July 1999  相似文献   

6.
He  G.Y.  Rooke  L.  Steele  S.  Békés  F.  Gras  P.  Tatham  A.S.  Fido  R.  Barcelo  P.  Shewry  P.R.  Lazzeri  P.A. 《Molecular breeding : new strategies in plant improvement》1999,5(4):377-386
Particle bombardment has been used to transform three cultivars (L35, Ofanto, Svevo) and one breeding line (Latino × Lira) of durum wheat (Triticum turgidum L. var. durum). These varieties were co-transformed with plasmids containing selectable and scorable marker genes (bar and uidA) and plasmids containing one of two high-molecular-weight (HMW) glutenin subunit genes (encoding subunits 1Ax1 or 1Dx5). Ten independent transgenic lines were recovered from 1683 bombarded scutella (transformation efficiency thus 0.6%). Five lines expressed either subunit 1Dx5 or 1Ax1 at levels similar to those of endogenous subunits encoded on chromosome 1B. To identify the effects of the transgenes on the functional properties of grain, three lines showing segregation for transgene expression were used to isolate sibling T2 plants which were null or positive for the transgene product. Analysis of these plants using a small-scale mixograph showed that expression of the additional subunits resulted in increased dough strength and stability, demonstrating that transformation can be used to modify the quality of durum wheat for bread and pasta making.  相似文献   

7.
Wheat bread-making quality is closely correlated with composition and quantity of gluten proteins, in particular with high-molecular weight (HMW) glutenin subunits encoded by the Glu-1 genes. A multiplex polymerase chain reaction (PCR) method was developed to identify the allele composition of HMW glutenin complex Glu-1 loci (Glu-A1, Glu-B1 and Glu-D1) in common wheat genotypes. The study of multiplex PCR to obtain a well-balanced set of amplicons involved examination of various combinations of selected primer sets and/or thermal cycling conditions. One to three simultaneously amplified DNA fragments of HMW glutenin Glu-1 genes were separated by agarose slab-gel electrophoresis and differences between Ax1, Ax2* and Axnull genes of Glu-A1 loci, Bx6, Bx7 and Bx17 of Glu-B1, and Dx2, Dx5 and Dy10 genes of Glu-D1 loci were revealed. A complete agreement was found in identification of HMW glutenin subunits by both multiplex PCR analysis and SDS-PAGE for seventy-six Polish cultivars/strains of both spring and winter common wheat. Rapid identification of molecular markers of Glu-1 alleles by multiplex PCR can be an efficient alternative to the standard separation procedure for early selection of useful wheat genotypes with good bread-making quality.  相似文献   

8.
Introgression of 1Dx5+1Dy10 into Tritordeum   总被引:2,自引:0,他引:2  
The uses of hexaploid tritordeum as a crop for human consumption require improvement of its bread-making quality. For this purpose chromosome 1D of bread wheat with the Glu-D1 allele encoding for high-molecular-weight glutenin subunits Dx5+Dy10 was introgressed into tritordeum. Different primary tritordeums were crossed with wheats carrying subunits Dx5+Dy10. The hybrids were backcrossed to tritordeum and seeds for the next backcross (or selfing) were selected for the presence of chromosome 1D using SDS-PAGE. Forty two chromosome plants carrying subunits Dx5+Dy10 were obtained after two backcrosses and selfing. Chromosome characterization of these plants using fluorescence in situ hybridisation (FISH) proved that either chromosome substitution 1H(ch)/1D or 1A/1D had been obtained. A homozygous plant with a translocation of the entire 1DL arm to 1H(ch)S was also obtained. The complete chromosome substitution lines have better agronomic characteristics than the lines with translocations.  相似文献   

9.
We generated and characterized transgenic rye synthesizing substantial amounts of high-molecular-weight glutenin subunits (HMW-GS) from wheat. The unique bread-making characteristic of wheat flour is closely related to the elasticity and extensibility of the gluten proteins stored in the starchy endosperm, particularly the HMW-GS. Rye flour has poor bread-making quality, despite the extensive sequence and structure similarities of wheat and rye HMW-GS. The HMW-GS 1Dx5 and 1Dy10 genes from wheat, known to be associated with good bread-making quality were introduced into a homozygous rye inbred line by the biolistic gene transfer. The transgenic plants, regenerated from immature embryo derived callus cultures were normal, fertile, and transmitted the transgenes stably to the sexual progeny, as shown by Southern blot and SDS-PAGE analysis. Flour proteins were extracted by means of a modified Osborne fractionation from wildtype (L22) as well as transgenic rye expressing 1Dy10 (L26) or 1Dx5 and 1Dy10 (L8) and were quantified by RP-HPLC and GP-HPLC. The amount of transgenic HMW-GS in homozygous rye seeds represented 5.1% (L26) or 16.3% (L8) of the total extracted protein and 17% (L26) or 29% (L8) of the extracted glutelin fraction. The amount of polymerized glutelins was significantly increased in transgenic rye (L26) and more than tripled in transgenic rye (L8) compared to wildtype (L22). Gel permeation HPLC of the un-polymerized fractions revealed that the transgenic rye flours contained a significantly lower proportion of alcohol-soluble oligomeric proteins compared with the non-transgenic flour. The quantitative data indicate that the expression of wheat HMW-GS in rye leads to a high degree of polymerization of transgenic and native storage proteins, probably by formation of intermolecular disulfide bonds. Even -40k secalins, which occur in non-transgenic rye as monomers, are incorporated into these polymeric structures. The combination 1Dx5 + 1Dy10 showed stronger effects than 1Dy10 alone. Our results are the first example of genetic engineering to significantly alter the polymerization and composition of storage proteins in rye. This may be an important step towards improving bread-making properties of rye whilst conserving its superior stress resistance.  相似文献   

10.
The high-molecular-weight (HMW) subunits of wheat glutenin are the major determinants of the gluten visco-elasticity that allows wheat doughs to be used to make bread, pasta and other food products. In order to increase the proportions of the HMW subunits, and hence improve breadmaking performance, particle bombardment was used to transform tritordeum, a fertile amphiploid between wild barley and pasta wheat, with genes encoding two HMW glutenin subunits (1Ax1 and 1Dx5). Of the 13 independent transgenic lines recovered (a transformation frequency of 1.4%) six express the novel HMW subunits at levels similar to, or higher than, those of the endogenous subunits encoded on chromosome 1B. Small-scale mixograph analysis of T2 seeds from a line expressing the transgene for 1Dx5 indicated that the addition of novel HMW subunits can result in significant improvements in dough strength and stability, thus demonstrating that transformation can be used to modify the functional properties of tritordeum for improved breadmaking. Received: 15 January 1999 / Accepted: 5 February 1999  相似文献   

11.
 The objective of this study was to detect the presence of alien chromatin in intergeneric hybrids of durum wheat (Triticum turgidum, 2n=4x=28; AABB genomes) with the perennial grass Thinopyrum junceiforme (2n=4x=28; J1J1J2J2) using RAPD markers. The first step was to identify amplification of species-specific DNA markers in the parental grass species and durum wheat cultivars. Initially, the genomic DNA of five grass species (Thinopyrum junceiforme, Th. bessarabicum, Lophopyrum elongatum, Leymus karataviensis and Elytrigia pycnantha) and selected durum cultivars (‘Langdon’, ‘Durox’, ‘Lloyd’, ‘Monroe’, and ‘Medora’) was screened with 40 oligonucleotide primers (nano-mers). Three oligonucleotides that amplified DNA fragments specific to a grass species or to a durum cultivar were identified. Primer PR21 amplified DNA fragments specific to each of the five durum cultivars, and primers PR22 and PR23 amplified fragments specific to each of the grass species. Intergeneric hybrids between the durum cultivars ‘Langdon’, ‘Lloyd’ and ‘Durox’ and Th. junceiforme, and their backcross (BC) progeny were screened with all 40 primers. Six primers amplified parent-specific DNA fragments in the F1 hybrids and their BC1 progeny. Three primers, PR22, PR23 and PR41, that amplified Th. junceiforme DNA fragments in both F1 and BC1 were further analyzed. The presence of an amplified 1.7-kb Th. junceiforme DNA fragment in the F1 hybrids and BC1 progeny was confirmed using Southern analysis by hybridization with both Th. junceiforme genomic DNA and Th. junceiforme DNA amplified with primer PR41. With the exception of line BC1F2 no. 5, five selfed progeny of BC1 and a BC2 of line 3 (BC1F2 no. 3בLloyd’) from a cross of ‘Lloyd’×Th. junceiforme showed the presence of the 1.7-kb DNA fragment. All selfed BC1 and BC2 lines retained the 600-bp fragment that was confirmed after hybridization with Th. junceiforme DNA amplified with primer PR22. Other experiments using RFLP markers also showed the presence of up to seven Th. junceiforme DNA fragments in the F1 hybrids and their BC progeny after hybridization with Th. junceiforme DNA amplified with primer PR41. These studies show the usefulness of molecular markers in detecting alien chromatin/DNA fragments in intergeneric hybrids with durum wheat. Received: 21 November 1996 / Accepted: 21 March 1997  相似文献   

12.
Good or poor wheat bread-making quality is associated with two allelic pairs at theGlu-D1 complex locus, designated 1Dx5-1Dy10 and 1Dx2-1Dy12, respectively. The polymerase chain reaction (PCR) verified the presence of the HMW-glutenin 1Dx5 gene from genomic DNA extracted from part of the endosperm of a single dry seed, or a small amount of leaf or root tissue, of several bread-wheat cultivars. This easy, quick, and non-destructive PCR-based approach is proposed as a very efficient and safe alternative to standard procedures for selecting bread-wheat genotypes with good bread-making properties.  相似文献   

13.
The storage proteins of 64 F2-derived F6 recombinant inbred lines (RILs) from the bread wheat cross Prinqual/Marengo were analyzed. Parents differed at four loci: Gli-B1 (coding for gliadins), Glu-B1 (coding for HMW glutenin subunits), Glu-A3/Gli-A1 (coding for LMW glutenin subunits/gliadins) and Glu-D3 (coding for LMW glutenin subunits). The effect of allelic variation at these loci on tenacity, extensibility and dough strength as measured by the Chopin alveograph was determined. Allelic differences at the Glu-B1 locus had a significant effect on only tenacity. None of the allelic differences at either the Glu-A3/Gli-A1 or Glu-D3 loci had a significant effect on quality criteria. Allelic variation at the Gli-B1 locus significantly affected all of the dough properties. Epistatic effects between some of the loci considered contributed significantly to the variation in dough quality. Additive and epistatic effects each accounted for 15% of the variation in tenacity. Epistasis accounted for 15% of the variation in extensibility, whereas additive effects accounted for 4%. Epistasis accounted for 14% of the variation in dough strength, and additivity for 9%. The relative importance of epistatic effects suggest that they should be included in predictive models when breeding for breadmaking quality.  相似文献   

14.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   

15.
The protein named T1, present in Triticum tauschii, was previously characterized as a high-molecular-weight (HMW) glutenin subunit with a molecular size similar to that of the y-type glutenin subunit-10 of Triticum aestivum. This protein was present along with other HMW glutenin subunits named 2t and T2, and was considered as part of the same allele at the Glu-D t 1 locus of T. tauschii. This paper describes a re-evaluation of this protein, involving analyses of a collection of 173 accessions of T. tauschii, by SDS-PAGE of glutenin subunits after the extraction of monomeric protein. No accessions were found containing the three HMW glutenin subunits. On the other hand, 17 lines with HMW glutenin subunits having electrophoretic mobilities similar to subunits 2t and T2 were identified. The absence of T1 protein in these gel patterns has shown that protein T1 is not a component of the polymeric protein. Rather, the T1 protein is an ω-gliadin with an unusually high-molecular-weight. This conclusion is based on acidic polyacrylamide gel electrophoresis (A-PAGE), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and two-dimensional gel electrophoresis (A-PAGE+ SDS-PAGE), together with analysis of its N-terminal amino-acids sequence. The inheritance of ω-gliadin T1 was studied through analyses of gliadins and HMW glutenins in 106 F2 grains of a cross between synthetic wheat, L/18913, and the wheat cv Egret. HMW glutenin subunits and gliadins derived from T. tauschii (Glu-D t 1 and Gli-D t 1) segregated as alleles of the Glu-D1 and Gli-D1 loci of bread wheat. A new locus encoding the ω-gliadin T1 was identified and named Gli-DT1. The genetic distance between this new locus and those of endosperm proteins encoded at the 1D chromosome were calculated. The Gli-DT1 locus is located on the short arm of chromosome 1D and the map distance between this locus and the Gli-D1 and Glu-D1 loci was calculated as 13.18 cM and 40.20 cM, respectively. Received: 13 October 2000 / Accepted: 18 April 2001  相似文献   

16.
Seed storage proteins in wheat endosperm, particularly high-molecular-weight glutenin subunits (HMW-GS), are primary determinants of dough properties, and affect both end-use quality and grain utilization of wheat (Triticum aestivum L). In order to investigate the interactive effects between the transgenically overexpressed 1Ax1 subunit with different HMW-GS on dough quality traits, we developed a set of 8 introgression lines (ILs) overexpressing the transgenic HMW-glutenin subunit 1Ax1 by introgression of this transgene from transgenic line B102-1-2/1 into an elite Chinese wheat variety Chuanmai107 (C107), using conventional crossing and backcrossing breeding technique. The donor C107 strain lacks 1Ax1 but contains the HMW-GS pairs 1Dx2+1Dy12 and 1Bx7+1By9. The resultant ILs showed robust and stable expression of 1Ax1 even after five generations of self-pollination, and crossing/backcrossing three times. In addition, overexpression of 1Ax1 was compensated by the endogenous gluten proteins. All ILs exhibited superior agronomic performance when compared to the transgenic parent line, B102-1-2/1. Mixograph results demonstrated that overexpressed 1Ax1 significantly improved dough strength, resistance to extension and over-mixing tolerance, in the targeted wheat cultivar C107. Further, comparisons among the ILs showed the interactive effects of endogenous subunits on dough properties when 1Ax1 was overexpressed: subunit pair 17+18 contributed to increased over-mixing tolerance of the dough; expression of the Glu-D1 allele maintained an appropriate balance between x-type and y-type subunits and thereby improved dough quality. It is consistent with ILs C4 (HMW-GS are 1, 17+18, 2+12) had the highest gluten index and Zeleny sedimentation value. This study demonstrates that wheat quality could be improved by using transgenic wheat overexpressing HMW-GS and the feasibility of using such transgenic lines in wheat quality breeding programs.  相似文献   

17.
By crossing bread wheat cultlvar GC8901 with the 1D monosonlc line of Xiaoyan No. 6 and backcrosslng the offsprlng with the Xlaoyan No. 6 1D monosonlc llne for 5 years, high-molecular-welght glutenin subunlts 1Dx5+1Dy10 from GC8901 have been transferred Into wheat cultivar Xiaoyan No. 6. The BC5F1 offspring lines had been detected by using methods of cytology, marker, molecular marker and six elite single plants with high molecular-welght glutenin subunlts: lAx1, 1Bx14+1 By15, 1Dx5+1 Dy10 were Identified. Those lines have high-yleld potential with better agronomic characters and have been used In high quality wheat breeding processes as well.  相似文献   

18.
A number of useful marker-trait associations have been reported for wheat. However the number of publications detailing the integrated and pragmatic use of molecular markers in wheat breeding is limited. A previous report by some of these authors showed how marker-assisted selection could increase the genetic gain and economic efficiency of a specific breeding strategy. Here, we present a practical validation of that study. The target of this breeding strategy was to produce wheat lines derived from an elite Australian cultivar ‘Stylet’, with superior dough properties and durable rust resistance donated from ‘Annuello’. Molecular markers were used to screen a BC1F1 population produced from a cross between the recurrent parent ‘Stylet’ and the donor parent ‘Annuello’ for the presence of rust resistance genes Lr34/Yr18 and Lr46/Yr29. Following this, marker-assisted selection was applied to haploid plants, prior to chromosome doubling with cochicine, for the rust resistance genes Lr24/Sr24, Lr34/Yr18, height reducing genes, and for the grain protein genes Glu-D1 and Glu-A3. In general, results from this study agreed with those of the simulation study. Genetic improvement for rust resistance was greatest when marker selection was applied on BC1F1 individuals. Introgression of both the Lr34/Yr18 and Lr46/Yr29 loci into the susceptible recurrent parent background resulted in substantial improvement in leaf rust and stripe rust resistance levels. Selection for favourable glutenin alleles significantly improved dough resistance and dough extensibility. Marker-assisted selection for improved grain yield, through the selection of recurrent parent genome using anonymous markers, only marginally improved grain yield at one of the five sites used for grain yield assessment. In summary, the integration of marker-assisted selection for specific target genes, particularly at the early stages of a breeding programme, is likely to substantially increase genetic improvement in wheat.  相似文献   

19.
Lettuce big-vein disease is caused by Mirafiori lettuce virus (MiLV), which is vectored by the soil-borne fungus Olpidium brassicae. A MiLV-resistant transgenic lettuce line was developed through introducing inverted repeats of the MiLV coat protein (CP) gene. Here, a detailed characterization study of this lettuce line was conducted by comparing it with the parental, non-transformed ‘Kaiser’ cultivar. There were no significant differences between transgenic and non-transgenic lettuce in terms of pollen fertility, pollen dispersal, seed production, seed dispersal, dormancy, germination, growth of seedlings under low or high temperature, chromatographic patterns of leaf extracts, or effects of lettuce on the growth of broccoli or soil microflora. A significant difference in pollen size was noted, but the difference was small. The length of the cotyledons of the transgenic lettuce was shorter than that of ‘Kaiser,’ but there were no differences in other morphological characteristics. Agrobacterium tumefaciens used for the production of transgenic lettuce was not detected in transgenic seeds. The transgenic T3, T4, and T5 generations showed higher resistance to MiLV and big-vein symptoms expression than the resistant ‘Pacific’ cultivar, indicating that high resistance to lettuce big-vein disease is stably inherited. PCR analysis showed that segregation of the CP gene was nearly 3:1 in the T1 and T2 generations, and that the transgenic T3 generation was homozygous for the CP gene. Segregation of the neomycin phosphotransferase II (npt II) gene was about 3:1 in the T1 generation, but the full length npt II gene was not detected in the T2 or T3 generation. The segregation pattern of the CP and npt II genes in the T1 generation showed the expected 9:3:3:1 ratio. These results suggest that the fragment including the CP gene and that including the npt II gene have been integrated into two unlinked loci, and that the T1 plant selected in our study did not have the npt II gene. DNA sequences flanking T-DNA insertions in the T2 generation were determined using inverse PCR, and showed that the right side of the T-DNA including the npt II gene had been truncated in the transgenic lettuce.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号