首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The class B genes, which belong to the MADS-box gene family, play important roles in regulating petal and stamen development in flowering plants. These genes exist in two different types termed DEF- and GLO-like genes, and the B-function is provided by heterodimers of a DEF- and a GLO-like gene product. In the present study, dicot (tobacco and lettuce) and monocot (Tricyrtis hirta) plants were transformed with the GLO-like gene of Agapanthus praecox ssp. orientalis ApGLO alone or in combination with the DEF-like gene of the same plant ApDEF. In two out of 10 transgenic tobacco plants containing ApGLO, sepals partially converted into petaloid organs. For lettuce, ray florets of four out of nine transgenic plants containing ApGLO also developed additional petaloid organs. In two out of five transgenic T. hirta plants containing both ApGLO and ApDEF, organs developed in whorl 4 showed noticeable morphological alteration: they were much longer compared with carpels of non-transgenic plants, and had purple spots overall on the surface as filaments of non-transgenic plants. No morphological alterations were observed in vegetative organs between transgenic and non-transgenic plants for all the three species. The results obtained in the present study indicate a possibility of molecular breeding for flower form alteration by genetic transformation with the class B MADS-box gene(s) of heterologous plant species.  相似文献   

2.
Ethylene production was measured during vegetative and reproductive development in normal tobacco plants and in transgenic tobacco plants carrying antisense genes for tomato ACC oxidase driven by the 35S CaMV promoter (Hamilton et al., 1990). When expressed in three independently derived transgenic plants, the antisense ethylene gene failed to affect ethylene production in young/mature leaves or in stems but it did inhibit ethylene production in roots by 37–58%. Ethylene production in developing flowers (i.e. from small unopened flower buds up until open flowers at anthesis) was not affected in transgenic plants but ethylene production in fruits was inhibited by 35%. The most dramatic effect on ethylene production in transgenic plants was seen immediately after wounding leaf tissue, in which case the antisense gene inhibited wound ethylene production by 72%. Thus, the antisense gene composed of a 35S CaMV promoter driving a heterologous ACC oxidase sequence had differential effects on ethylene production in tobacco plants.  相似文献   

3.
Sucrose: sucrose 1-fructosyltransferase (1-SST) cDNA from Lactuca sativa, coding the enzyme responsible for lower degree polymers fructan biosynthesis, was cloned by RT-PCR and RACE methods. The 1-SST cDNA under the control of CaMV 35S promoter was introduced into tobacco by Agrobacterium-mediated leaf disc transformation protocol. Fructan synthesis in vitro and carbohydrate analysis showed that sense transgenic tobacco plant displayed sucrose: sucrose 1-fructosyltransferse activity. After freezing stress, significant increases in electrolyte leakage and malondialdehyde were found in the wild type and anti-sense transgenic plants, while no apparent differences were observed in sense transgenic plants. Meanwhile, water soluble carbohydrate, fructan and fructose of sense transgenic plants remarkably increased, compared with those of wild type and anti-sense plants. No significant difference was detected in superoxide dismutase activity between transgenic and wild type plants. The above results demonstrated that the expression of 1-SST gene improved the freezing resistance of transgenic tobacco plants.  相似文献   

4.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

5.
6.
Wang HZ  Hu B  Chen GP  Shi NN  Zhao Y  Yin QC  Liu JJ 《Plant cell reports》2008,27(2):251-259
To explore a new approach to generating reproductive sterility in transgenic plants, the barnase gene from Bacillus amyloliquefaciens was placed under the control of an 1853-bp nucleotide sequence from the 3′end of the second intron of Arabidopsis AGAMOUS and CaMV 35S (−60) minimal promoter [AG-I-35S (−60)::Barnase], and was introduced into tobacco through transformation mediated by Agrobacterium tumefaciens. All AG-I-35S (−60)::Barnase transgenic plants showed normal vegetative growth and 28% of the transgenic lines displayed complete ablation of flowering. Two transgenic lines, Bar-5 and Bar-15, were 98.1 and 98.4% sterile, respectively, as determined by seed production and germination. When controlled by AG-I-35S (−60) chimeric promoter, barnase mRNA was detected in the reproductive tissues of transgenic tobacco plants, but not in vegetative parts. This study presents the first application of an AG intron sequence in the engineered ablation of sexual reproduction in plants. The AG-I-35S (−60)::Barnase construct can be useful in diminishing pollen and seed formation in plants, providing a novel bisexual sterility strategy for interception of transgene escape and has other potentially commercial use for transgenic engineering.  相似文献   

7.
Transgenic cotton lines were developed for high-level expression of a synthetic cry1EC gene from a wound inducible promoter. The tobacco pathogenesis related promoter PR-1a was modified by placing CaMV35S promoter on its upstream in reverse orientation. The resultant chimeric promoter CaMV35S(r)PR-1a expressed constitutively and was further up-regulated at the site of feeding by insects. It was induced more rapidly by treatment with salicylic acid (SA). The CaMV35S(r)PR-1a cry1EC expressing transgenic lines of cotton showed 100% mortality of Spodoptera litura larvae. The tightly regulated low-level expression of PR-1a was modified to a highly expressing constitutive expression by CaMV35S placed in reverse orientation. Salicylic acid treatment and wounding enhanced the expression further by the chimeric promoter. The leaves expressed more δ-endotoxin around the sites of insect bites. The levels of expression and induction varied among different transgenic lines, suggesting position effect. Some of the transgenic lines that expressed Cry1EC from the chimeric promoter at a low level also showed 100% mortality when induced with salicylic acid. A highly expressing insect bite and wound inducible promoter is desirable for developing insect resistant transgenic plants.  相似文献   

8.
9.
10.
A novel, constitutively expressed gene, designated MtHP, was isolated from the model legume species Medicago truncatula. Sequence analysis indicates that MtHP most likely belongs to the PR10 multi-gene family. The MtHP promoter was fused to a -glucuronidase gene to characterize its expression in different plant species. Transient assay by microprojectile bombardment and hairy root transformation by Agrobacterium rhizogenes revealed GUS expression in leaf, stem, radicle and root in M. truncatula. Detailed analysis in transgenic Arabidopsis plants demonstrated that the promoter could direct transgene expression in different tissues and organs at various developmental stages; its expression pattern was similar to that of CaMV35S promoter, and the level of expression was higher than the reporter gene driven by CaMV35S promoter. Deletion analysis revealed that even a 107 bp fragment of the promoter could still lead to a moderate level of expression. The promoter was further characterized in white clover (Trifolium repens), a widely grown forage legume species. Strong constitutive expression was observed in transgenic white clover plants. Compared with CaMV35S promoter, the level of GUS activity in transgenic white clover was higher when the transgene was driven by MtHP promoter. Thus, the promoter provides a useful alternative to the CaMV35S promoter in plant transformation for high levels of constitutive expression.  相似文献   

11.
The insecticidal activity of the leaf (ASAL) and bulb (ASAII) agglutinins from Allium sativum L. (garlic) against the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) was studied using transgenic tobacco plants expressing the lectins under the control of the constitutive CaMV35S promoter. PCR analysis confirmed that the garlic lectin genes were integrated into the plant genome. Western blots and semi-quantitative agglutination assays revealed lectin expression at various levels in the transgenic lines. Biochemical analyses indicated that the recombinant ASAL and ASAII are indistinguishable from the native garlic lectins. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed ASAL and ASAII significantly (P < 0.05) reduced the weight gain of 4th instar larvae of S. littoralis. Further on, the lectins retarded the development of the larvae and their metamorphosis, and were detrimental to the pupal stage resulting in weight reduction and lethal abnormalities. Total mortality was scored with ASAL compared to 60% mortality with ASAII. These findings suggest that garlic lectins are suitable candidate insect resistance proteins for the control of S. littoralis through a transgenic approach.  相似文献   

12.
13.
Erythropoietin (EPO) is a glycoprotein used for curing human anemia by regulating the differentiation of erythroid progenitors and the production of red blood cells. To examine the expression of recombinant EPO in plants, pPEV-EP21, in which human epo cDNA under the control of the CaMV 35S promoter, was introduced into tobacco and Arabidopsisvia Agrobacterium tumefaciens-mediated transformation. The RNA expression level of epo in the transgenic lines was initially estimated by Northern blot analysis. Two transgenic lines, which exhibited a high expression level of epo mRNA determined by Northern analysis, were chosen for Western blot analysis to examine the production of EPO proteins. Those two lines, EP21-12 and EP21-14, revealed detectable bands on the immunoblot. Interestingly, constitutive expression of the human epo gene affected the morphologies in transgenic plants such that vegetative growth of transgenic tobacco was retarded, and male sterility was induced in transgenic tobacco and ArabidopsisThese authors contributed equally to this work  相似文献   

14.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

15.
Zheng X  Deng W  Luo K  Duan H  Chen Y  McAvoy R  Song S  Pei Y  Li Y 《Plant cell reports》2007,26(8):1195-1203
Here we report the effect of the 35S promoter sequence on activities of the tissue- and organ-specific gene promoters in tobacco plants. In the absence of the 35S promoter sequence the AAP2 promoter is active only in vascular tissues as indicated by expression of the AAP2:GUS gene. With the 35S promoter sequence in the same T-plasmid, transgenic plants exhibit twofold to fivefold increase in AAP2 promoter activity and the promoter becomes active in all tissue types. Transgenic plants hosting the ovary-specific AGL5:iaaM gene (iaaM coding an auxin biosynthetic gene) showed a wild-type phenotype except production of seedless fruits, whereas plants hosting the AGL5:iaaM gene along with the 35S promoter sequence showed drastic morphological alterations. RT-PCR analysis confirms that the phenotype was caused by activation of the AGL5:iaaM gene in non-ovary organs including roots, stems and flowers. When the pollen-, ovule- and early embryo-specific PAB5:barnase gene (barnase coding a RNase gene) was transformed, the presence of 35S promoter sequence drastically reduced transformation efficiencies. However, the transformation efficiencies were restored in the absence of 35S promoter, indicating that the 35S promoter might activate the expression of PAB5:barnase in non-reproductive organs such as calli and shoot primordia. Furthermore, if the 35S promoter sequence was replaced with the NOS promoter sequence, no alteration in AAP2, AGL5 or PAB5 promoter activities was observed. Our results demonstrate that the 35S promoter sequence can convert an adjacent tissue- and organ-specific gene promoter into a globally active promoter. Xuelian Zheng and Wei Deng contributed equally to this work and are considered co-first authors.  相似文献   

16.
We modulated the level of a hormone gene expression in poplars using either 35S promoter (p35S) of cauliflower mosaic virus (CaMV) or aux promoter (pAUX) of A. rhizogenes. The transgenic poplars (Populus alba × P. tremula var. glandulosa), in which the bacterial trans-zeatin secretion (tzs) gene was attached either to the 35S promoter or to the aux promoter, were compared for their performance in tissue culture as well as in nursery. Northern blot analysis of total RNA probed with tzs coding region showed that the total tzs mRNA expression by p35S was approximately 200–300-fold higher than that driven by pAUX. In contrast, the cellular zeatin content of p35S-tzs transgenic poplars was merely 13-fold of those found in pAUX-tzs plants. Due to different levels of cellular zeatin levels, the two types of transgenic poplars showed different morphogenetic as well as growth responses. The p35S-tzs transgenic plants showed morphological characteristics typical of those treated with cytokinin in culture. These include multiple axillary shoot formation, thick stems, narrow leaves and absence of roots. In contrast, the pAUX-tzs plants had slightly higher cellular cytokinin levels than did control plants and showed a lower degree of cytokinin-related phenotypes, including a few axillary shoots in root-inducing media. Since p35S-tzs did not develop roots, only pAUX-tzs transgenic poplars could be transplanted to the nursery where they resumed a close-to-normal growth. Nevertheless, pAUX-tzs plants transferred to the nursery developed cytokinin-related phenotypes, including greater number of shoots, smaller leaves and slightly retarded growth in height, but with a high total biomass.  相似文献   

17.
18.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

19.
20.
Plant lipoxygenases (LOXs) are key enzymes involved in the generation of fatty acid derivatives, called oxylipins. In tobacco, LOX gene expression and activity are very low in healthy tissues and are highly enhanced in response to infection by Phytophthora parasitica nicotianae and to elicitor treatment. We previously showed, using antisense-LOX1 plants, that expression of the tobacco LOX1 gene is required for the race-cultivar specific resistance of tobacco to Phytophthora parasitica nicotianae. In order to investigate the effect of over-expressing a LOX gene on plant resistance, we transformed tobacco plants with the LOX1 coding sequence fused to the CaMV 35S promoter. Four transgenic lines with enhanced levels of LOX protein and specific activity over control plants were selected for further analysis. These plants were macroscopically indistinguishable from WT plants. Upon stem inoculation, the sense-LOX1 plants displayed a significantly decreased susceptibility to virulent races of Phytophthora parasitica nicotianae, stem lesions being 2- to 3-fold shorter in the transgenic lines than in WT plants. Using a root inoculation assay, the survival rate of sense-LOX1 seedlings was increased about 4-fold compared to their WT counterparts, with 60 to 80% of transgenic plants vs 15 to 20% of WT controls remaining healthy following inoculation with Phytophthora parasitica nicotianae. This is the first demonstration that the over-expression of a LOX gene is sufficient to reduce the susceptibility of a host plant to an oomycete pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号