首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Competitive inhibition of soybean urease by 11 cyclic beta-triketones was studied in aqueous solutions at pH 7.4 and 36 degrees C. This process was characterized quantitatively by the inhibition constant (Ki), which showed a strong dependence on the structure of organic chelating agents (nickel atoms in urease) and varied from 58.4 to 847 microM. Under similar conditions, the substrate analogue (hydroxyurea) acted as a weak urease inhibitor (Ki = 6.47 mM). At 20 degrees C, competitive inhibition of urease with the ligand of nickel atoms (fluoride anion) was pH-dependent. At pH 3.85-6.45, the value of Ki for the process ranged from 36.5 to 4060 microM. Three nontoxic cyclic beta-triketones with Ki values of 58.4, 71.4, and 88.0 microM (36 degrees C) were the most potent inhibitors of urease. Their efficacy was determined by the presence of three >C=O- groups in the molecule and minimum steric hindrances to binding with metal sites in soybean urease.  相似文献   

2.
1. Enzymically active insoluble derivatives of chymotrypsin and rennin were prepared by coupling each enzyme to agarose as described by Porath, Axén & Ernback (1967) and rennin to aminoethylcellulose by the method of Habeeb (1967). 2. Agarose-chymotrypsin was stable over the range pH2-9, but agarose-rennin released active enzyme into solution at above pH2 and aminoethylcellulose-rennin was similarly unstable at certain pH values. 3. Each derivative appeared to catalyse the clotting of milk at 30 degrees , but this was probably entirely due to enzyme released into solution from the carrier. 4. The presence of a competitive inhibitor of chymotrypsin during its coupling to agarose had no effect on the activity or stability of the resulting derivative. 5. The characteristics of agarose and cellulose render them not entirely suitable for use in a continuous system with milk.  相似文献   

3.
The stability of native and immobilized urease isolated from Staphylococcus saprophyticus was studied at 4 degrees and 25 degrees C. The activity yield was 20% and 1.4% on the enzyme immobilization in albumin gel and latex membrane, respectively. Inactivation of native microbial urease proceeded 10 times slower in the solution containing 1 mM EDTA and 30 mM sodium sulfite. This solution contributed to a great extent to stabilization of immobilized urease both during storage in the phosphate buffer solution and in case of lyophilization.  相似文献   

4.
A composite membrane made of cross-linked poly(N-isopropylacrylamide-co-N-acryloxysuccinimide-co-2-hydroxyethyl methacrylate) (p(NIPAAm-NAS-HEMA)) hydrogel on polyester nonwoven support has been synthesized. The composite membrane shows temperature-responsive properties similar to conventional PNIPAAm hydrogels beads, which reversibly swells below and de-swells above the lower critical solution temperature of PNIPAAm (around 32 to 33 degrees C). Diffusion of urea through the membrane was temperature-dependent with the effective diffusion coefficient at 20 degrees C being 18 times that at 60 degrees C. Urease was immobilized directly to the membrane by forming covalent bonds between its amino groups and the succinimide ester groups of the membrane. Membrane prepared with NIPAAm to NAS molar ratio of 9, and then reacted in pH 7 buffer with 6 mg of urease gave the best immobilized enzyme, where 0.102 mg protein and 5.71 U activity per cm(2) membrane, and 55% relative specific activity could be obtained. There was negligible internal mass transfer resistance for this preparation judging from the calculated effectiveness factor. Urease shows enhanced thermal stability after immobilization with the first-order inactivation rate constant at 70 degrees C decreased to 1/8 of that of free urease. Membrane-immobilized urease could be utilized in a two-compartment membrane reactor with temperature swing to substantially enhance urea hydrolysis rate. The best operating condition of the membrane reactor was with temperature cycling between 60 to 20 degrees C and with temperature change every 10 min, where concentration of product ammonia after 3 h reaction increased 3.8-folds when compared with isothermal operation at 60 degrees C.  相似文献   

5.
Urease was encapsulated within kappa-carrageenan beads. Various parameters, such as amount of kappa-carrageenan and enzyme activity, were optimized for the immobilization of urease. Immobilized urease was thoroughly characterized for pH, temperature, and storage stabilities and these properties were compared with the free enzyme. The free urease activity quickly decreased and the half time of the activity decay was about 3 days at 4 degrees C. The immobilized urease remained very active over a long period of time and this enzyme lost about 70.43% of its orginal activity over the period of 26 days for storage at 4 degrees C. The Michaelis constant (Km) and maximum reaction velocity (Vmax) were calculated from Lineweaver-Burk plots for both free and immobilized enzyme systems. Vmax = 227.3 U/mg protein, Km = 65.6 mM for free urease and Vmax = 153.9 U/mg protein, Km = 96.42 mM for immobilized urease showed a moderate decrease of enzyme specific activity and change of substrate affinity.  相似文献   

6.
Many-sided investigations of urease immobilization methods were carried out to create the biosensor devices on the base of semiconductor structures. Special attention was concentrated on the biomembrane formation by means of urease and bovine serum albumin (BSA) cross-linking by gaseous glutaraldehyde. Optimal conditions for the formation process were selected which preserve about 20% of total urease activity after the cross-linking. The properties of enzyme immobilized by the above-mentioned method have been comprehensively studied. They included the urease activity dependence on pH, ionic strength, incubation buffer capacity as well as the enzyme stability during its functioning, storing and thermoinactivation. As was shown, for immobilized ureas Km value for urea at pH 7.0 and 20 degrees C is 1.65 time less than for free enzyme. In the presence of EDTA (1 mM) the enzyme activity in the biomembrane is practically unchanged under a month storing. Biomembrane possesses good adhesion to silicon surface and its swelling level under different conditions does not exceed 35%. The conclusion is made about the prospects of the used method of biomembrane formation for biosensor technology based on semiconductor structures.  相似文献   

7.
The pellet-associated portion of human brain alpha-L-fucosidase (which represents approx. 20% of the homogenate activity) was solubilized with 0.5% (w/v) Triton X-100, characterized with regard to several properties and compared with the corresponding properties of the soluble supernatant-fluid enzyme in an attempt to find a second alpha-L-fucosidase in human brain. The solubilized and soluble alpha-L-fucosidase activities exhibited complete stability after storage at 2-4 degrees C for up to 29 days, comparable thermostability after preincubation at 50 degrees C, comparable apparent Km values (0.07-0.08 mM) for 4-methylumbelliferyl alpha-L-fucopyranoside, comparable hydrophobicity, comparable isoelectric-focusing profiles (six major forms, with pI values between 4.5 and 5.8) and comparable immunoprecipitation curves (with the IgG fraction of antisera prepared against human liver alpha-L-fucosidase). Differences in three properties were found between solubilized and soluble alpha-L-fucosidase activities: the solubilized activity was less stable to storage at -20 degrees C, had a 0.5-pH-unit neutral shift in its pH optimum (6.0) and had smaller Mr forms after gel filtration on Sephadex G-200. The overall results indicate that the pellet-associated and soluble portions of human brain alpha-L-fucosidase are quite similar in most of their properties. Thus there is still no compelling evidence for the existence of a second mammalian alpha-L-fucosidase.  相似文献   

8.
It has been shown that urea in fermented beverages and foods can serve as a precursor of ethylcarbamate, a potential carcinogen, and acid urease is an effective agent for removing urea in such products. We describe herein the purification and characterization of a novel acid urease from Arthrobacter mobilis SAM 0752 and show its unique application for the removal of urea from fermented beverages using the Japanese rice wine, sake, as an example. The purified acid urease showed an optimum pH for activity at pH 4.2. The enzyme exhibited an apparent K(m) for urea of 3.0 mM and a Vmax of 2370 mumol of urea per mg and min at 37 degrees C and pH 4.2. Gel permeation chromatographic and sodium dodecyl sulfate gel electrophoretic analyses showed that the enzyme has an apparent native molecular weight (M(r)) of 290,000 and consisted of three types of subunit proteins (M(r), 67,000, 16,600, 14,100) denoted by alpha, beta, and gamma. The most probable stoichiometry of the subunits was estimated to be alpha: beta: gamma = 1:1:1, suggesting the enzyme subunit structure of (alpha beta gamma)3. The enzyme also existed as an aggregated form with an M(r) of 580,000. The purified enzyme contained 2 g-atom of nickel per alpha beta gamma unit of the enzyme. Enzyme activity was inhibited by acetohydroxamic acid, HgCl2, and CuCl2. The isoelectric point of the native enzyme was estimated by gel electrofocusing to be 6.8. Urea (50 ppm), which was exogenously added to sake (pH 4.4, 17 +/- 1% (v/v) ethanol), was completely decomposed by incubation with the enzyme (0.09 U ml-1) at 15 degrees C for 13 days. The enzyme was unstable at temperatures higher than 65 degrees C and pHs lower than 4, and was completely inactivated under the conditions of a pasteurization step involved in the traditional sake-making processes. These results indicate that the enzyme is applicable to the elimination of urea in fermented beverages with minimal modification to the conventional process.  相似文献   

9.
1. Glucose oxidase (EC 1.1.3.4) and urease (EC 3.5.1.5) were covalently attached through glutaraldehyde to low-molecular-weight nylon powder. 2. Immobilized derivatives of glucose oxidase and urease were prepared by cross-linking the respective enzymes within the matrix of a nylon membrane. 3. An improved process is described for the immobilization of glucose oxidase and urease on the inside surface of partially hydrolysed nylon tube. 4. Automated analytical procedures are described for the determination of glucose with each of the three immobilized glucose oxidase derivatives and for the determination of urea with each of the three immobilized urease derivatives. 5. The efficiencies of the three immobilized enzyme structures as reagents for the automated determination of their substrates were compared.  相似文献   

10.
Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose   总被引:1,自引:0,他引:1  
This paper presents stable Alcalase-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced by immobilizing-stabilizing Alcalase on cross-linked 10% agarose beads, using low and high activation grades of the support and different immobilization times. The Alcalase glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde and CNBr as activation reactants. The performance of derivatives in the hydrolysis of casein was also tested. At pH 8.0 and 50 degrees C, Alcalase derivatives produced with 1 h of immobilization time on agarose activated with glutaraldehyde, CNBr, and low and high glyoxyl groups concentration presented half-lives of ca. 10, 29, 60, and 164 h, respectively. More extensive immobilization monotonically led to higher stabilization. The most stabilized Alcalase-glyoxyl derivative was produced using 96 h of immobilization time and high activation grade of the support. It presented half-life of ca. 23 h, at pH 8.0 and 63 degrees C and was ca. 500-fold more stable than the soluble enzyme. Thermal inactivation of all derivatives followed a single-step non-first-order kinetics. The most stable derivative presented ca. 54% of the activity of the soluble enzyme for the hydrolysis of casein and of the small substrate Boc-Ala-ONp. This behavior suggests that the decrease in activity was due to enzyme distortion but not to wrong orientation. The hydrolysis degree of casein at 80 degrees C with the most stabilized enzyme was 2-fold higher than that achieved using soluble enzyme, as a result of the thermal inactivation of the latter. Therefore, the high stability of the new Alcalase-glyoxyl derivative allows the design of continuous processes to hydrolyze proteins at temperatures that avoid microbial growth.  相似文献   

11.
Soluble conjugates of pepsin and carboxypeptidase A were prepared by covalent linkage of the enzymes to an amino derivative of dextran. By fractionating the dextran derivatives before and after enzyme coupling, three conjugates, with median Stokes radii between 4.0 and 11.7 nm and with a range of 25% of the median, were prepared from each enzyme. The pepsin and carboxypeptidase A conjugates contained about 35% and 3% protein, respectively. Both types had specific activities close to those of the native enzymes and were stable at -20 degrees C. The pH-activity curve was unaffected by linkage of either enzyme to dextran. The stabilities at 30 degrees C of pepsin at pH 6-7 and carboxypeptidase A at pH 3.5-9.0 were increased by linkage to dextran. No significant amount of unbound enzyme was released from either type of conjugate in skim milk. The molecular sizes, deduced from the intrinsic viscosities and the diffusion coefficients of all conjugates, were close enough to the Stokes radii to indicate that the molecules were approximately spherical. Physical measurements also indicated that the molecules were dextranlike and highly hydrated.  相似文献   

12.
Thioesterase activity was found in all mycoplasmas tested. Activity was highest in Acholeplasma species, whereas most of the sterol-requiring Mycoplasma species showed little activity. The thioesterase activity of Acholoplasma laidlawii is confined to the cell membrane. The enzyme could not be released from the membrane by either low- or high-ionic-strength solutions, with or without ethylenediaminetetraacetic acid, nor solubilized by detergents. The enzyme has a general specificity for long-chain saturated and unsaturated fatty acid thioesters. The preferred substrates among the saturated fatty acyl derivatives are the myristyl and palmityl derivatives. Arrhenius plots of thioesterase activities in A. laidlawii membranes enriched with elaidic or palmitic acids showed discontinuities at 12 and 18 degrees C, respectively. The possible regulatory significance of the thioesterase activity for the fatty acid synthetase and the possibllity that the activity of the enzyme is controlled by the physical state of membrane lipids are discussed.  相似文献   

13.
This paper presents stable carboxypeptidase A (CPA)-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced after immobilizing-stabilizing CPA on cross-linked 6% agarose beads, activated with low and high concentrations of aldehyde groups, and different immobilization times. The CPA-glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde as activation reactant. The most stabilized CPA-glyoxyl derivative was produced using 48 h of immobilization time and high activation grade of the support. This derivative was approximately 260-fold more stable than the soluble enzyme and presented approximately 42% of the activity of the soluble enzyme for the hydrolysis of long-chain peptides (e.g., cheese whey proteins previously hydrolyzed with immobilized trypsin and chymotrypsin) and of the small substrate N-benzoylglycyl-l-phenylalanine (hippuryl-l-Phe). These results were much better than those achieved using the conventional support, glutaraldehyde-agarose. Amino acid analysis of the products of the acid hydrolysis of CPA (both soluble and immobilized) showed that approximately four lysine residues were linked on the glyoxyl agarose beads, suggesting the existence of an intense multipoint covalent attachment between the enzyme and the support. The maximum temperature of hydrolysis was increased from 50 degrees C (soluble enzyme) to 70 degrees C (most stable CPA-glyoxyl derivative). The most stable CPA-glyoxyl derivative could be efficiently used in the hydrolysis of long-chain peptides at high temperature (e.g., 60 degrees C), being able to release 2-fold more aromatic amino acids (Tyr, Phe, and Trp) than the soluble enzyme, under the same operational conditions. This new CPA derivative greatly increased the feasibility of using this protease in the production of protein hydrolysates that must be free of aromatic amino acids.  相似文献   

14.
A beta-glycosidase gene homolog of Pyrococcus horikoshii (BGPh) was successfully expressed in Escherichia coli. The enzyme was localized in a membrane fraction and solubilized with 2.5% Triton X-100 at 85 degrees C for 15 min. The optimum pH was 6.0 and the optimum temperature was over 100 degrees C, respectively. BGPh stability was dependent on the presence of Triton X-100, the enzyme's half-life at 90 degrees C (pH 6.0) was 15 h. BGPh has a novel substrate specificity with k(cat)/K(m) values high enough for hydrolysis of beta-D-Glcp derivatives with long alkyl chain at the reducing end and low enough for the hydrolysis of beta-linked glucose dimer more hydrophilic than aryl- or alkyl-beta-D-Glcp.  相似文献   

15.
Rabbit hepatic microsomal 12 alpha-steroid hydroxylase which is stable to storage at -70 degrees C in the pellet form was assayed for activity with [5 alpha,6 alpha-3H2]cholestane-3 alpha,7 alpha-diol solubilized with Tween 80 since methanol was incapable of maintaining the sterol in aqueous solution. Under optimized conditions in phosphate buffer, pH 7.4, containing nicotinamide, magnesium chloride, and NADPH, the enzyme conversion appeared linear for the initial 10 min. The rate of hydroxylation was proportional to protein concentration up to 4 mg/ml. Apparent Km and Vmax were 71 microM and 323 pmol of product/mg of protein/min. Based on the known structural requirements of the enzyme system, competitive inhibitors were prepared with the C-12 position derivatized as an alkene, hydroxyl, or oxo functional group. A Dixon plot revealed that 5 alpha-cholest-11-ene-3 alpha,7 alpha,26-triol was the best inhibitor with an apparent Ki of 26 microM.  相似文献   

16.
Penicillin amidase, alpha-chymotrypsin and urease have been immobilized in water-soluble nonstoichiometric polyelectrolyte complexes (N-PEC). N-PEC are formed by modified poly(N-ethyl-4-vinyl-pyridinium bromide) (polycation) and excess poly(methylacrylic acid) (polyanion). N-PEC are a new class of polymers capable, characteristically, of phase transitions solution in equilibrium precipitate induced by slight change in pH or ionic strength. Neither the chemical structure of the carrier nor the number of cross-linkages between an enzyme and a carrier change on phase transition. That gives an unique opportunity to elucidate the difference between enzymes immobilized on water-soluble and water-insoluble supports. A detailed study of the phase transition effect on thermal stability of the enzymes and protein-protein interactions has been carried out. The following effects were found. Pronounced thermal stabilization of penicillin amidase and urease may be achieved on two conditions: the enzyme is in the precipitate; (b) the enzyme is linked to the N-PEC nucleus. Then the thermal stability of N-PEC-bound penicillin amidase increases 7-fold at pH 5.7, 60 degrees C, and 300-fold at pH 3.1, 25 degrees C, compared to the native enzyme. For urease, the thermal stabilization increases 20-fold at pH 5.0, 70 degrees C. The localization of enzyme on N-PEC has been established by titration of alpha-chymotrypsin bound to a polycation or polyanion with basic pancreatic trypsin inhibitor. Both in solution (pH 6.1) and in N-PEC precipitate (pH 5.7), an alpha-chymotrypsin molecule bound to a polyanion is fully exposed to the solution. If the enzyme is bound to a polycation, only 20% of alpha-chymotrypsin molecules in the precipitate and 40% in solution retain their ability for protein-protein interactions. This means that a polycation-bound enzyme is localized in the hydrophobic nucleus of the complex, whereas the polyanion-bound enzyme sits on the hydrophilic shell of the complex. On pH-induced phase transition (pH decreases from 6.1 to 5.7), there occurs a stepwise decrease in penicillin amidase activity which is due to a 9.8-fold increase in the Km for 2-nitro-4-phenylacetamidobenzoic acid. Change of the catalytic activity and thermal stability of N-PEC-bound penicillin amidase is fully reversible and reproducible. Such soluble-insoluble immobilized enzymes with controllable thermal stability and activity may be used for simulating events in vivo and in biotechnology.  相似文献   

17.
Preparation and properties of fluorescent polysaccharides   总被引:13,自引:0,他引:13  
A new method for preparing fluorescein derivatives of polysaccharides is described. These derivatives are prepared by activation of the polysaccharide with cyanogen bromide and subsequent reaction with fluoresceinamine. The optimum conditions for coupling have been established in this report. Using this procedure, we have prepared fluorescein derivatives of a wide variety of polysaccharides. Degrees of substitution in the range of 3.0 X 10(-3) to 2.4 X 10(-2) mol of fluorescein per mole of monosaccharide equivalent were obtained. The fluorescent derivatives are stable: no free fluorescein was detected after incubation at 22 degrees C for 48 h or at -10 degrees C for 4 months. The fluorescein-derivatized polysaccharides were found to have the same potency in inhibiting lectin-mediated hemagglutination as the underivatized polysaccharide. In addition, these fluorescent polysaccharides can be radioiodinated to specific activities exceeding 10(6) dpm/micrograms due to incorporation of 125I into fluorescein. The cell binding properties of 125I-fucoidin and 125I-heparin are indistinguishable from the corresponding underivatized polysaccharides. This general approach for preparing fluorescent polysaccharides should produce useful reagents for localizing and quantifying cell surface carbohydrate-binding proteins (lectins).  相似文献   

18.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+ -ATPase and the Mg2+ -ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membrane-bound Mg2+ -ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20 degrees C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+ -ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at -20 degrees C, which was characteristic of hepatoma plasma membrane Mg2+ -ATPase. With solubilized Mg2+ -ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+ -ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at -20 degrees C.  相似文献   

19.
p-Benzoquinone (pBQ) was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA, 25 degrees C. The inhibition was carried out by the use of a preincubation procedure in the absence of substrate. The influence of the inhibitor concentration and the preincubation time on the enzyme activity was elucidated. It was found that increase in pBQ concentration resulted in a linear decrease of urease activity. The dependence of the enzyme activity on the preincubation time showed that the rate of inhibition rapidly decreased at the beginning of the process in order to achieve the constant value. The inhibition became time independent in the studied time range. This observation is characteristic of a slow binding mechanism of inhibition. The protective experiment proved that the urease active site is involved in the binding of pBQ. High effectiveness of thiol protectors against pBQ inhibition indicates the strategic role of the active site sulfhydryl group in the blocking process. There were two methods used for reactivation of pBQ-inhibited urease. The dilution of the urease-pBQ complex in urea solution did not result in a regain of enzyme activity. Alternatively, the addition of dithiothreitol into the urease-pBQ mixture caused the instant and efficient reactivation of the enzyme. The experiments showed that the nature of the urease-pBQ complex is irreversible but the application of a specific thiol reagent can release the active enzyme from the complex.  相似文献   

20.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号