首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The promyelocytic leukemia gene (PML) encodes a growth/tumor suppressor protein that is essential for the induction of apoptosis in response to various apoptotic signals. The mechanism by which PML plays a role in the regulation of cell death is still unknown. In the current study, we demonstrate that PML negatively regulated the SAPK2/p38 signaling pathway by sequestering p38 from its upstream kinases, MKK3, MKK4, and MKK6, whereas PML did not affect the SAPK1/c-Jun NH(2)-terminal kinase pathway. PML associated with p38 both in vitro and in vivo and the carboxyl terminus of PML mediated the interaction. In contrast to other studies of PML and PML-nuclear bodies (NB), our study shows that the formation of PML-NBs was not required for PML to suppress p38 activity because PML was still able to bind and inhibit p38 activity under the conditions in which PML-NBs were disrupted. In addition, we show that the promotion of Fas-induced cell death by PML correlated with the extent of p38 inhibition by PML, suggesting that PML might regulate apoptosis through manipulating SAPK2/p38 pathways. Our findings define a novel function of PML as a negative regulator of p38 kinase and provide further understanding on the mechanism of how PML induces multiple pathways of apoptosis.  相似文献   

2.
3.
Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases.  相似文献   

4.
Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha   总被引:1,自引:0,他引:1  
TAB1, a subunit of the kinase TAK1, was phosphorylated by SAPK2a/p38alpha at Ser423, Thr431 and Ser438 in vitro. TAB1 became phosphorylated at all three sites when cells were exposed to cellular stresses, or stimulated with tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) or lipopolysaccharide (LPS). The phosphorylation of Ser423 and Thr431 was prevented if cells were pre-incubated with SB 203580, while the phosphorylation of Ser438 was partially inhibited by PD 184352. Ser423 is the first residue phosphorylated by SAPK2a/p38alpha that is not followed by proline. The activation of TAK1 was enhanced by SB 203580 in LPS-stimulated macrophages, and by proinflammatory cytokines or osmotic shock in epithelial KB cells or embryonic fibroblasts. The activation of TAK1 by TNF-alpha, IL-1 or osmotic shock was also enhanced in embryonic fibroblasts from SAPK2a/p38alpha-deficient mice, while incubation of these cells with SB 203580 had no effect. Our results suggest that TAB1 participates in a SAPK2a/p38alpha-mediated feedback control of TAK1, which not only limits the activation of SAPK2a/p38alpha but synchronizes its activity with other signalling pathways that lie downstream of TAK1 (JNK and IKK).  相似文献   

5.
Microtubule-associated protein tau in a hyperphosphorylated state is the major component of the filamentous lesions that define a number of neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, argyrophilic grain disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Previous work has established that the phosphorylation-dependent anti-tau antibody AT100 is a specific marker for filamentous tau in adult human brain. Here we have identified protein kinases that generate the AT100 epitope in vitro and have used them, in conjunction with site-directed mutagenesis of tau, to map the epitope. We show that the sequential phosphorylation of recombinant tau by cAMP-dependent protein kinase (PKA) and the stress-activated protein kinases SAPK4/p38delta or JNK2 generated the AT100 epitope and that this required phosphorylation of T212, S214 and T217. Tau protein from newborn, but not adult, mouse brain was weakly labelled by AT100. Phosphorylation by PKA and SAPK4/p38delta abolished the ability of tau to promote microtubule assembly, but failed to influence significantly the heparin-induced assembly of tau into filaments.  相似文献   

6.
7.
Protein kinase C (PKC) family members have been implicated in numerous cellular processes. However, identifying the substrates of each PKC isozyme remains a challenge. Here, we describe a method using two-dimensional (2D) isoelectric focusing gel electrophoresis to identify substrates of delta PKC (deltaPKC) in MCF-7 breast carcinoma cells. We show that M2 pyruvate kinase is a substrate of deltaPKC, and further characterize the interaction between M2 pyruvate kinase and deltaPKC in MCF-7 cells by immunoprecipitation. deltaPKC activation in vitro or in cells did not appear to alter the enzyme activity or polymerization of M2 pyruvate kinase.  相似文献   

8.
Activation of the neutrophil NADPH oxidase by either the bacterial peptide fMLP or phorbol myristate acetate (PMA) is partially suppressed by SB 203580, a specific inhibitor of the MAP kinase family member, SAPK2/p38. The concentration of SB 203580 that suppresses activation of NADPH oxidase is similar to that which inhibits SAPK2/p38 in vitro, and both fMLP and PMA induce an extremely rapid and potent activation of SAPK2/p38 in neutrophils. SB 203580 does not exert its effect by preventing the neutrophil priming reaction, by suppressing the phosphorylation of p47phax, or by preventing the translocation of p47phax/p67phax to the plasma membrane.  相似文献   

9.
Angiotensin II elicits cytosolic Ca2+ signal that is transferred into the mitochondria. Previously we found in H295R cells that this signal transfer is enhanced by both the inhibition of p38 MAPK and a novel isoform of PKC [G. Szanda, P. Koncz, A. Rajki, A. Spät, Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake, Cell Calcium 43 (2008) 250–259]. Now we report that simultaneous activation of these protein kinases (by TNFα and PMA + an inhibitor of the conventional PKC isoforms, respectively) attenuates the transfer of cytosolic Ca2+ signal, elicited by depolarisation or store-operated Ca2+ influx, into the mitochondria. The Ca2+ uptake enhancing effect of the p38 MAPK inhibitor SB202190 is due to the inhibition of p38 MAPK and not to a direct mitochondrial action. Protein kinases reduce mitochondrial [Ca2+] by inhibiting the uptake mechanism. The threshold of mitochondrial Ca2+ uptake may depend on the activity of p38 MAPK. The silencing of protein kinase D (PKD) also results in enhanced transfer of Ca2+ signal from the cytosol into the mitochondria. Our data indicate that Ca2+ mobilising agonists, through the simultaneous activation of p38 MAPK, a novel PKC isoform and PKD, exert a negative feed-forward action on mitochondrial Ca2+ uptake, thus reducing the risk of Ca2+ overload.  相似文献   

10.
Our recent data suggest that during auto- and allograft recognition in sponges (Porifera), cytokines are differentially expressed. Since the mitogen-activated protein kinase (MAPK) signal transduction modulates the synthesis and release of cytokines, we intended to identify one key molecule of this pathway. Therefore, a cDNA from the marine sponge Suberites domuncula encoding the MAPK was isolated and analyzed. Its encoded protein is 366 amino acids long (calculated Mr 42 209), has a TGY dual phosphorylation motif in protein kinase subdomain VIII and displays highest overall similarity to the mammalian p38 stress activated protein kinase (SAPK2), one subfamily of MAPKs. The sponge protein was therefore termed p38_SD. The overall homology (identity and similarity) between p38_SD and human p38alpha (CSBP2) kinase is 82%. One feature of the sponge kinase is the absence of threonine at position 106. In human p38alpha MAPK this residue is involved in the interaction with the specific pyridinyl-imidazole inhibitor; T106 is replaced in p38_SD by methionine. Inhibition studies with the respective inhibitor SB 203580 showed that it had no effect on the phosphorylation of the p38 substrate myelin basic protein. A stress responsive kinase Krs_SD similar to mammalian Ste20 kinases, upstream regulators of p38, had already previously been found in S. domuncula. The S. domuncula p38 MAPK is phosphorylated after treatment of the animal in hypertonic medium. In contrast, exposure of cells to hydrogen peroxide, heat shock and ultraviolet light does not cause any phosphorylation of p38. It is concluded that sponges, the oldest and most simple multicellular animals, utilize the conserved p38 MAPK signaling pathway, known to be involved in stress and immune (inflammatory) responses in higher animals.  相似文献   

11.
The stress-activated protein kinase 2 (SAPK2/p38) is activated by various environmental stresses and also by a vast array of agonists including growth factors and cytokines. This implies the existence of multiple proximal signaling pathways converging to the SAPK2/p38 activation cascade. Here, we show that there is a sensing mechanism highly specific to heat shock for activation of SAPK2/p38. After mild heat shock, cells became refractory to reinduction of the SAPK2/p38 pathway by a second heat shock. This was not the result of a toxic effect because the cells remained fully responsive to reinduction by other stresses, cytokines, or growth factors. Neither the activity of SAPK2/p38 itself nor the accumulation of the heat shock proteins was essential in the desensitization process. The cells were not desensitized to heat shock by other treatments that activated SAPK2/p38. Moreover, inhibiting SAPK2/p38 activity during heat shock did not block desensitization. Also, overexpression of HSP70, HSP27, or HSP90 by gene transfection did not cause desensitization, and inhibiting their synthesis after heat shock did not prevent desensitization. Desensitization rather appeared to be linked closely to the turnover of a putative upstream activator of SAPK2/p38. Cycloheximide induced a progressive and eventually complete desensitization. The effect was specific to heat shock and minimally affected activation by other stress inducers. Inhibiting protein degradation with MG132 caused the constitutive activation of SAPK2/p38, which was blocked by a pretreatment with either cycloheximide or heat shock. The results thus indicate that there is a sensing pathway highly specific to heat shock upstream of SAPK2/p38 activation. The pathway appears to involve a short lived protein that is the target of rapid successive up- and down-regulation by heat shock.  相似文献   

12.
13.
Nearly all processes in cells are regulated by the coordinated interplay between reversible protein phosphorylation and dephosphorylation. Therefore, it is a great challenge to identify all phosphorylation substrates of a single protein kinase to understand its integration into intracellular signaling networks. In this work, we developed an assay that holds promise as being useful for the identification of phosphorylation substrates of a given protein kinase of interest. The method relies on irreversible inhibition of endogenous kinase activities with the ATP analogue 5'-fluorosulfonylbenzoyladenosine (5'FSBA). 5'FSBA-treated cell extracts are then combined with a purified activated kinase to allow phosphorylation of putative substrate proteins, followed by a two-step purification protocol and identification by fingerprint mass spectrometry. Specifically, we applied this method to identify new phosphorylation substrates of the Drosophila p21-activated kinase (PAK) protein Mbt. Among candidate proteins identified by mass spectrometry, the dynactin complex subunit dynamitin was verified as a bona fide Mbt phosphorylation substrate and interaction partner, suggesting an involvement of this PAK protein in the regulation of dynactin-dependent cellular processes.  相似文献   

14.
A novel brain-specific 25 kDa protein (p25) was purified from a bovine brain extract. The protein was phosphorylated by Ser/Thr-Pro kinase (TPK II) in tau protein kinase fractions at the Ser residues of Ser-Pro sequences. Using immunoblot analysis, the protein was found only in brain extracts, and was most abundant in the brain regions such as cerebrum and hippocampus, but less abundant in cerebellum, medulla oblongata and olfactory bulb. The protein was detected in rat, bovine and human brain extracts, indicating that this protein specifically exists in mammalian brain tissues.  相似文献   

15.
PRAK, a novel protein kinase regulated by the p38 MAP kinase.   总被引:22,自引:2,他引:20       下载免费PDF全文
L New  Y Jiang  M Zhao  K Liu  W Zhu  L J Flood  Y Kato  G C Parry    J Han 《The EMBO journal》1998,17(12):3372-3384
We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo.  相似文献   

16.
Little is known about the functions of class III unconventional myosins although, with an N-terminal kinase domain, they are potentially both signaling and motor proteins. Limulus myosin III is particularly interesting because it is a phosphoprotein abundant in photoreceptors that becomes more heavily phosphorylated at night by protein kinase A. This enhanced nighttime phosphorylation occurs in response to signals from an endogenous circadian clock and correlates with dramatic changes in photoreceptor structure and function. We seek to understand the role of Limulus myosin III and its phosphorylation in photoreceptors. Here we determined the sites that become phosphorylated in Limulus myosin III and investigated its kinase, actin binding, and myosin ATPase activities. We show that Limulus myosin III exhibits kinase activity and that a major site for both protein kinase A and autophosphorylation is located within loop 2 of the myosin domain, an important actin binding region. We also identify the phosphorylation of an additional protein kinase A and autophosphorylation site near loop 2, and a predicted phosphorylation site within loop 2. We show that the kinase domain of Limulus myosin III shares some pharmacological properties with protein kinase A, and that it is a potential opsin kinase. Finally, we demonstrate that Limulus myosin III binds actin but lacks ATPase activity. We conclude that Limulus myosin III is an actin-binding and signaling protein and speculate that interactions between actin and Limulus myosin III are regulated by both second messenger mediated phosphorylation and autophosphorylation of its myosin domain within and near loop 2.  相似文献   

17.
Inhibitors of p38 mitogen-activated protein kinase (MAPK) diminish inflammatory arthritis in experimental animals. This may be effected by diminishing the production of inflammatory mediators, but this kinase is also part of the IL-1 signal pathway in articular chondrocytes. We determined the effect of p38 MAPK inhibition on proliferative and synthetic responses of lapine chondrocytes, cartilage, and synovial fibroblasts under basal and IL-1-activated conditions.Basal and growth factor-stimulated proliferation and proteoglycan synthesis were determined in primary cultures of rabbit articular chondrocytes, first-passage synovial fibroblasts, and cartilage organ cultures. Studies were performed with or without p38 MAPK inhibitors, in IL-1-activated and control cultures. Media nitric oxide and prostaglandin E2 were assayed.p38 MAPK inhibitors blunt chondrocyte and cartilage proteoglycan synthesis in response to transforming growth factor beta; responses to insulin-like growth factor 1 (IGF-1) and fetal calf serum (FCS) are unaffected. p38 MAPK inhibitors significantly reverse inhibition of cartilage organ culture proteoglycan synthesis by IL-1. p38 MAPK inhibition potentiated basal, IGF-1-stimulated and FCS-stimulated chondrocyte proliferation, and reversed IL-1 inhibition of IGF-1-stimulated and FCS-stimulated DNA synthesis. Decreases in nitric oxide but not prostaglandin E2 synthesis in IL-1-activated chondrocytes treated with p38 MAPK inhibitors are partly responsible for this restoration of response. Synovial fibroblast proliferation is minimally affected by p38 MAPK inhibition.p38 MAPK activity modulates chondrocyte proliferation under basal and IL-1-activated conditions. Inhibition of p38 MAPK enhances the ability of growth factors to overcome the inhibitory actions of IL-1 on proliferation, and thus could facilitate restoration and repair of diseased and damaged cartilage.  相似文献   

18.
This study describes a method for the identification of the substrates of specific serine kinases. An antibody specific for the phosphomotif generated by the kinase is used to isolate phosphorylated substrates by immunoprecipitation, and the isolated proteins are identified by tandem mass spectrometry of peptides. This method was applied to the identification of substrates for the protein kinase Akt, which specifically phosphorylates the RXRXXS/T motif. 3T3-L1 adipocytes were treated with insulin to activate Akt, and the putative Akt substrate proteins were isolated by immunoprecipitation with an antibody against the phospho form of this motif. This led to the identification of a novel 160-kDa substrate for Akt. The 160-kDa substrate for Akt, which was designated AS160, has a Rab GAP domain. Recombinant AS160 was shown to be a substrate for Akt, and two sites of phosphorylation, both in RXRXXS/T motifs, were identified by mass spectrometry and mutation. Insulin treatment of adipocytes caused AS160 to redistribute from the low density microsomes to the cytosol.  相似文献   

19.
While protein kinases are key components in multiple cellular processes, efficient identification of cognate in vivo substrates remains challenging. Here we describe a powerful method to screen potential substrates of protein kinases by partial transfer of proteins from a 2D-PAGE gel to a Western blot membrane. This approach allowed precise pinpointing of candidate substrate spots in the 2D gel, and identifying physiological substrates of protein kinases in Mycobacterium tuberculosis.  相似文献   

20.
Inhibitors of p38 mitogen-activated protein kinase (MAPK) diminish inflammatory arthritis in experimental animals. This may be effected by diminishing the production of inflammatory mediators, but this kinase is also part of the IL-1 signal pathway in articular chondrocytes. We determined the effect of p38 MAPK inhibition on proliferative and synthetic responses of lapine chondrocytes, cartilage, and synovial fibroblasts under basal and IL-1-activated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号