首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Abstract: SR 58611A, a selective agonist of gut and brown adipose tissue β3-adrenoceptors (β3ARs), has been reported to have antidepressant-like activity in rodents by indicating brain β3ARs as the sites of this property. SR 58611A and its acid metabolite SR 58878A, as opposed to BRL 37344, ICI 215,001, and CGP 12177, increased cyclic AMP levels in rat frontal cortex. ICI 215,001, differently from BRL 37344, at concentrations in the millimolar range antagonized norepinephrine- or (−)-isoproterenol-stimulated adenylyl cyclase partially. The increase of cyclic AMP levels induced by SR 58878A was blocked selectively by β1AR antagonist CGP 20712A but not by β2AR antagonist ICI 118,551. In addition, PCR analysis did not reveal β3AR mRNA, and no specific β3AR binding sites were detected by [3H]CGP 12177 in rat frontal cortex. When down-regulation of the β1AR ligand binding and mRNA levels had been induced in frontal cortex by chronic administration of imipramine, SR 58878A as well as norepinephrine and (−)-isoproterenol increased the cyclic AMP production less markedly. Our findings indicate that β3ARs are absent in the adult rat frontal cortex, and that various β3AR agonists differently affect the frontal cortex β1ARs, indicating that SR 58611A may exert its putative antidepressant effect acting on the frontal cortex β1ARs.  相似文献   

5.
Abstract: In this report, we have examined the radioligand binding and second messenger signalling characteristics of β-adrenoceptors in the guinea-pig brain. [125I]lodocyanopindolol ([125I]ICYP)-labelled sites in the cerebellum and cerebral cortex were of similar densities ( B max 34 and 24 fmol·mg−1) and affinities ( K D 20 and 55 p M ), respectively. Analysis of competition for [125I]ICYP binding in the cerebellum was compatible with the presence of a β2-adrenoceptor. In this tissue, isoprenaline evoked a cyclic AMP stimulation, and also potentiated cyclic GMP accumulations evoked in the presence of a nitric oxide donor, consistent with mediation via a β2-adrenoceptor. The [125I]ICYP binding profile in the cerebral cortex did not comply with those previously described for β-adrenoceptor subtypes, and isoprenaline failed to alter significantly cyclic AMP accumulation in the cerebral cortex, hippocampus, or neostriatum, even in the presence of forskolin or a phosphodiesterase inhibitor. Isoprenaline was also without effect on cyclic GMP accumulation or phosphoinositide turnover in the cerebral cortex. These results suggest that the guinea-pig cerebellum expresses a functional β2-adrenoceptor coupled to cyclic AMP generation, and potentiation of cyclic GMP accumulation. However, the guinea-pig cerebral cortex displays binding sites that exhibit β-adrenoceptor-like pharmacology but fail to show functional coupling to cyclic AMP, cyclic GMP, or phosphoinositide signalling systems.  相似文献   

6.
7.
Abstract: Epinephrine (Epi) mediates various physiological effects via α2A-adrenergic receptors (α2A-ARs). Studies in mice with a point mutation in the gene for α2A-AR have shown that these receptors are responsible for the centrally mediated depressor effects of α2-AR agonists. These studies underscore the importance of understanding the basic cellular mechanisms involved in the expression of α2A-ARs, of which little is known. We use astroglia cultured from the hypothalamus and brainstem of adult Sprague-Dawley rats as a model system in which to study factors that regulate α2A-AR expression. These cells contain α2-ARs, which are predominately of the α2A-AR subtype. Our studies have shown that Epi causes a dose- and time-dependent decrease in steady-state levels of α2A-AR mRNA and number of α2A-ARs, effects that are mediated via α1- and β-adrenergic receptors (α1-ARs and β-ARs). These effects of Epi on α2A-AR mRNA and α2A-AR number are mimicked by activation of protein kinase C or increases in cellular cyclic AMP, which are intracellular messengers activated by α1-ARs and β-ARs, respectively. Taken together, these results indicate that expression of α2A-ARs is regulated in a heterologous manner by Epi, via α1-AR- and β-AR-mediated intracellular pathways.  相似文献   

8.
9.
Abstract: Cyclic GMP accumulation in pinealocytes is elevated>100-fold by norepinephrine (NE) through a mechanism involving conjoint activation of α1- and β1-adrenergic receptors. Little or no stimulation occurs if either α1- or β1-adrenergic receptors alone are activated. It appears that α1-adrenergic effects are mediated by Ca2+ acting in part through nitric oxide (NO), and β1-adrenergic effects are mediated by Gs. In the study presented here we investigated effects of adrenergic agonists or related postreceptor-active agents on stimulation of pineal cyclic GMP accumulation by the NO generator sodium nitroprusside (NP). The cyclic GMP response to NP (1 m M ) was potentiated by NE and isoproterenol (ISO) but not by phenylephrine, indicating that activation of β1-adrenergic receptors potentiates the effects of NP. Similarly, vasoactive intestinal peptide (VIP), cholera toxin (CTX), and forskolin, all of which are known to mimic the effects of ISO in this system, also potentiated the effects of NP. In contrast, neither dibutyryl cyclic AMP nor agents that elevate intracellular Ca2+ levels caused marked potentiation of the effects of NP on pineal cyclic GMP. Depletion (90%) of Gsα by 21-h treatment with CTX reduced β-adrenergic potentiation of NP. These findings indicate that β-adrenergic agonists and VIP potentiate the effects of NP through a mechanism involving Gs. The molecular basis of this action may be an increase in guanylyl cyclase responsiveness to NO.  相似文献   

10.
Abstract: In this study, the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic nucleotide accumulation and melatonin (MT) production in dispersed rat pinealocytes were measured. Treatment with PACAP (10−7 M ) increased MT production 2.5-fold. PACAP (10−7 M ) also increased cyclic AMP accumulation four- to fivefold; this effect was potentiated two- to three-fold by α1-adrenergic activation. This potentiation appears to involve protein kinase C (PKC) because α1-adrenergic activation is known to translocate PKC and the PACAP-stimulated cyclic AMP accumulation was potentiated ninefold by a PKC activator, 4β-phorbol 12-myristate 13-acetate (PMA). Phenylephrine and PMA also potentiated the PACAP-stimulated MT accumulation. These results indicate that cyclic AMP is one second messenger of PACAP in the pineal gland and that the effects of PACAP on cyclic AMP and MT production can be potentiated by an α1-adrenergic → PKC mechanism. In addition to these findings, it was observed that PACAP treatment with or without phenylephrine or PMA did not alter cyclic GMP accumulation. This indicates that PACAP is the first ligand identified that increases cyclic AMP accumulation in the pineal gland without increasing cyclic GMP accumulation. That PACAP fails to activate the vasoactive intestinal peptide/cyclic GMP pathway suggests that the vasoactive intestinal peptide receptors present in the pineal may be distinct from the type II PACAP receptors.  相似文献   

11.
In the present study, we investigated the IGF system in neonatal astrocytes derived from mice with a targeted disruption of the beta-2 adrenergic receptor (β2AR). β2AR knockout astrocytes demonstrated higher proliferation rates and increased expression of the astrogliotic marker GFAP, as compared with wild-type cells. β2AR deletion also regulated molecules of the IGF system. Although IGF-1 levels remained unaltered, IGF-2 and type 1 IGF receptor expression was increased in β2AR knockout cells. Furthermore, conditioned medium from knockout astrocytes contained lower levels of IGF binding protein-2 and -4. Our data suggest a deficit of β2AR on astrocytes, as previously reported in multiple sclerosis, may have implications on proliferative status of astrocytes, a feature that might be attributed to regulation of IGF mitogenic actions.  相似文献   

12.
Site-directed mutagenesis guided by evolutionary trace analysis revealed that substitution of V179 and W183 within a cluster of evolutionarily important residues on the surface of the fourth transmembrane domain of the β1-adrenergic receptor (β1AR) significantly reduced the propensity of the receptor to self-assemble into homodimers as assessed by bioluminescence resonance energy transfer in living cells. These results suggest that mutation of V179 and W183 result in conformational changes that reduce homodimerization either directly by interfering with the dimerization interface or indirectly by causing local misfolding that result in reduced self-assembly. However, the mutations did not cause a general misfolding of the β1AR as they did not prevent heterodimerization with the β2AR. The homodimerization-compromised mutants were significantly retained in the endoplasmic reticulum (ER) and could not be properly matured and trafficked to the cell surface. Lipophilic β-adrenergic ligands acted as pharmacological chaperones by restoring both dimerization and plasma membrane trafficking of the ER-retained dimerization-compromised β1AR mutants. These results clearly indicate that homodimerization occurs early in the biosynthetic process in the ER and that pharmacological chaperones can promote both dimerization and cell surface targeting, most likely by stabilizing receptor conformations compatible with the two processes.  相似文献   

13.
14.
15.
Abstract: Exposure of primary rat astrocyte cultures to bacterial endotoxin lipopolysaccharide (LPS) causes expression of a Ca2+-in-dependent form of nitric oxide synthase (NOS). In these cells, the presence of norepinephrine (NE) caused a dose-dependent inhibition of the LPS induction of NOS activity, with an IC50 value of 100 nMand significant suppression at 100 pAf. Short incubations (5-40 min) with NE were as effective as 24-h continuous exposure, and inhibition was observed up to the longest incubation period measured (56 h). In contrast, previously induced NOS activity was not affected by exposure to NE. The effects of NE were mediated primarily by binding to β-adrenergic receptors (β-ARs) because (a) the β-AR antagonist propranolol, but not the n-AR antagonist phentol-amine, could reverse the effects of NE; (b) the β-AR agonist isoproterenol. but not the a-AR agonist phenylephrine, was as effective as NE in blocking the effects of LPS; and (c) incubation with the cyclic AMP analogue dibutyryl cyclic AMP replicated the effects of NE. In contrast to astroglial cultures, LPS induction of NOS activity in RAW 264.7 macrophage cells was not affected by NE or dibutyryl cyclic AMP. These results indicate that in brain, inducible NOS in astrocytes can be regulated by neurotransmitter binding to glial receptors.  相似文献   

16.
Abstract: Neuropeptide Y is colocalized with noradrena-line in sympathetic fibers innervating the rat pineal gland. In this article we present a study of the effects and mechanisms of action of neuropeptide Y on the pineal noradrenergic transmission, the main input leading to the rhythmic secretion of melatonin. At the presynaptic level, neuropeptide Y inhibits by 45%, with an EC50 of 50 n M , the potassium-evoked noradrenaline release from pineal nerve endings. This neuropeptide Y inhibition occurs via the activation of pertussis toxin-sensitive G protein-coupled neuropeptide Y-Y2 receptors and is independent from, but additive to, the α2-adrenergic inhibition of noradrenaline release. At the postsynaptic level, neuropeptide Y decreases by a maximum of 35%, with an EC50 of 5 n M , the β-adrenergic induction of cyclic AMP elevation via the activation of neuropeptide Y-Y1 receptors. This moderate neuropeptide Y-induced inhibition of cyclic AMP accumulation, however, has no effect on the melatonin secretion induced by a β-adrenergic stimulation. On the contrary, in the presence of 1 m M ascorbic acid, neuropeptide Y potentiates (up to threefold) the melatonin secretion. In conclusion, this study has demonstrated that neuropeptide Y modulates the noradrenergic transmission in the rat pineal gland at both presynaptic and postsynaptic levels, using different receptor subtypes and transduction pathways.  相似文献   

17.
18.
Abstract: In rat pinealocytes, protein kinase C (PKC) is involved in the α1-adrenergic-mediated potentiation of β-adrenergic-stimulated cyclic nucleotide responses; however, the specific PKC isozyme(s) involved in the potentiation mechanism remain unknown. In the present study, we compared the effects of two PKC inhibitors, calphostin C, a specific inhibitor of PKC, and Gö6976, a selective inhibitor of PKCα and PKCβ1, on the adrenergic-stimulated cyclic nucleotide accumulation in rat pinealocytes. Surprisingly, Gö6976 was found to have an enhancing effect on basal cyclic GMP and isoproterenol-stimulated cyclic AMP and cyclic GMP accumulation, an effect not shared by calphostin C. Gö6976 also increased the norepinephrine- and ionomycin-induced potentiation of isoproterenol-stimulated cyclic AMP and cyclic GMP accumulation, whereas the effect of calphostin C was inhibitory. The enhancing effect of Gö6976 was abolished in the presence of isobutylmethylxanthine or zaprinast, but not rolipram, suggesting that this effect of Gö6976 may be mediated through type V or the retinal type of phosphodiesterase. Based on these observations, we propose that some of the PKC isozyme(s) inhibited by calphostin C are involved in the potentiation of β-adrenergic-stimulated cyclic nucleotide responses and that they act by enhancing synthesis. However, PKC isozymes inhibited by Gö6976 appear to be basally active and tonically inhibit cyclic nucleotide accumulation through their stimulatory action on phosphodiesterase.  相似文献   

19.
Abstract: Aromatase in the diencephalic neurons, the level of which increases transiently during the prenatal to neonatal period, has been suggested to be involved in control of sexual behavior and differentiation of the CNS. Effects of neurotransmitters on levels of aromatase mRNA in cultured neurons were investigated to determine factors regulating the developmental increase that occurs in level of fetal brain aromatase. The expression of aromatase in diencephalic neurons of fetal mice at embryonic day 13, cultured in vitro, was significantly affected by α1-adrenergic receptor ligands. Aromatase mRNA levels were higher in neurons treated with the α1-agonist phenylephrine than in control neurons, whereas prazosin, an α1-antagonist, suppressed this increase, and ligands for α2- or β-adrenergic receptors did not exert any influence. The profile of α1-adrenergic receptor subtypes during actual development in vivo suggested that the α1B subtype is in fact responsible for the signal transduction. Substance P, cholecystokinin, neurotensin, and brain natriuretic peptide also increased the level of expression along with phorbol 12-myristate 13-acetate and dibutyryl-cyclic GMP, whereas forskolin and dibutyryl-cyclic AMP caused a decrease. These data indicate that stimulation via α1 (possibly α1B)-adrenergic receptors, as well as receptors of specific neuropeptides, controls the expression of aromatase in embryonic day 13 diencephalic neurons through activation of protein kinase C or G. β-Adrenergic receptors would not appear to participate in the regulation, judging from their developmental profile, although cyclic AMP might be a suppressive second messenger.  相似文献   

20.
Light-Induced CREB Phosphorylation and Gene Expression in Rat Retinal Cells   总被引:1,自引:0,他引:1  
Abstract: The signal pathway for light-induced expression of c- fos and the neuropeptide somatostatin (SS) in rat retinal cells was investigated. Flashing light induced c- fos and SS mRNA in the inner nuclear layer and the ganglion cell layer. As both c- fos and SS genes have a cyclic AMP response element (CRE) in their promoters, CRE-binding protein (CREB) phosphorylation in retinal cells was examined with a phospho-CREB-specific antibody. Both flashing light and administration of the L-type Ca2+ channel activator Bay K 8644 induced phosphorylation of CREB in the nuclei of the amacrine cells and the ganglion cells where c- fos /SS mRNAs were expressed. These cells could be double-stained with anti-calmodulin kinase II (anti-CaM kinase II) monoclonal antibody and phospho-CREB-specific polyclonal antiserum after Bay K 8644 administration, indicating the colocalization of phosphorylated CREB at Ser133 and CaM kinase II in the neural retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号