首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The germ cell lineage segregates from the somatic cell lineages in early embryos. Germ cell determination in mice is not regulated by maternally inherited germplasm, but is initiated within the embryo during gastrulation. However, the mechanisms of germ cell specification in mice remain unknown. We located precursors to primordial germ cells (PGCs) within early embryos, and show here that cell-cell interaction among these precursors is required for germ cell specification. We found that the expression of a calcium-dependent cell adhesion molecule, E-cadherin, is restricted to the proximal region of extra-embryonic mesoderm that contains PGC precursors, and that blocking the functions of E-cadherin with an antibody inhibits PGC formation in vitro. These results showed that E-cadherin-mediated cell-cell interaction among cells containing PGC precursors is essential to directing such cells to the germ cell fate.  相似文献   

2.
The gene product ahnak has been identified from extra-embryonic mesoderm cDNA enriched using a subtractive hybridization approach modified for using small amounts of starting material. Clones for cyclin D2 and H19 have also been isolated as being preferentially enriched in the extra-embryonic mesoderm compared with the embryo proper of embryonic day (E) 7.5 neural plate stage mouse embryos. The differential expression of these genes was confirmed at gastrulation stage using in situ hybridization. More detailed analysis of the human genomic ahnak sequence suggests that its highly repetitive structure was formed by unequal cross-over and gene conversion. During organogenesis, ahnak is expressed in a variety of tissues, including migratory mesenchyme. By E12.5, the major site of expression of ahnak is craniofacial mesenchyme. Immunohistochemical analysis has shown that ahnak protein is expressed mainly at the cell membrane of migratory mesenchymal cells, primarily in the nucleus of bone growth plate cells and mostly in the cytoplasm of differentiating nasal epithelia. The potential functions of ahnak are discussed in light of these results.  相似文献   

3.
The proto-oncogene int-2 has been implicated in the formation of mouse mammary-tumour-virus-induced mammary tumours. Analysis of the predicted coding sequence indicates that int-2 is a member of the fibroblast growth factor family. Previous studies using Northern blot analysis suggested that normal expression of int-2 may be confined to extra-embryonic endoderm lineages of embryonic stages of mouse development. We have used in situ hybridization and Northern blot analysis to examine directly int-2 expression in embryo stem cells and in the developing embryo from early gastrulation to midsomite stages. Complex patterns of accumulation of int-2 RNA were observed in embryonic and extra-embryonic tissues. The data suggest multiple roles for int-2 in development which may include migration of early mesoderm cells and induction of the otocyst.  相似文献   

4.
5.
The fate of cells in the epiblast at prestreak and early primitive streak stages has been studied by injecting horseradish peroxidase (HRP) into single cells in situ of 6.7-day mouse embryos and identifying the labelled descendants at midstreak to neural plate stages after one day of culture. Ectoderm was composed of descendants of epiblast progenitors that had been located in the embryonic axis anterior to the primitive streak. Embryonic mesoderm was derived from all areas of the epiblast except the distal tip and the adjacent region anterior to it: the most anterior mesoderm cells originated posteriorly, traversing the primitive streak early; labelled cells in the posterior part of the streak at the neural plate stage were derived from extreme anterior axial and paraxial epiblast progenitors; head process cells were derived from epiblast at or near the anterior end of the primitive streak. Endoderm descendants were most frequently derived from a region that included, but extended beyond, the region producing the head process: descendants of epiblast were present in endoderm by the midstreak stage, as well as at later stages. Yolk sac and amnion mesoderm developed from posterolateral and posterior epiblast. The resulting fate map is essentially the same as those of the chick and urodele and indicates that, despite geometrical differences, topological fate relationships are conserved among these vertebrates. Clonal descendants were not necessarily confined to a single germ layer or to extraembryonic mesoderm, indicating that these lineages are not separated at the beginning of gastrulation. The embryonic axis lengthened up to the neural plate stage by (1) elongation of the primitive streak through progressive incorporation of the expanding lateral and initially more anterior regions of epiblast and, (2) expansion of the region of epiblast immediately cranial to the anterior end of the primitive streak. The population doubling time of labelled cells was 7.5 h; a calculated 43% were in, or had completed, a 4th cell cycle, and no statistically significant regional differences in the number of descendants were found. This clonal analysis also showed that (1) growth in the epiblast was noncoherent and in most regions anisotropic and directed towards the primitive streak and (2) the midline did not act as a barrier to clonal spread, either in the epiblast in the anterior half of the axis or in the primitive streak. These results taken together with the fate map indicate that, while individual cells in the epiblast sheet behave independently with respect to their neighbours, morphogenetic movement during germ layer formation is coordinated in the population as a whole.  相似文献   

6.
During gastrulation in the mouse, the pluripotent embryonic ectoderm cells form the three primary germ layers, ectoderm, mesoderm and endoderm. Little is known about the mechanisms responsible for these processes, but evidence from previous studies in amphibians, as well as expression studies in mammals, suggest that signalling molecules of the Fibroblast Growth Factor (FGF) family may play a role in gastrulation. To determine whether this might be the case for FGF-5 in the mouse embryo, we carried out RNA in situ hybridization studies to determine when and where in the early postimplantation embryo the Fgf-5 gene is expressed. We chose to study this particular member of the FGF gene family because we had previously observed that its pattern of expression in cultures of teratocarcinoma cell aggregates is consistent with the proposal that Fgf-5 plays a role in gastrulation in vivo. The results reported here show that Fgf-5 expression increases dramatically in the pluripotent embryonic ectoderm just prior to gastrulation, is restricted to the cells forming the three primary germ layers during gastrulation, and is not detectable in any cells in the embryo once formation of the primary germ layers is virtually complete. Based on this provocative expression pattern and in light of what is known about the functions in vitro of other members of the FGF family, we hypothesize that in the mouse embryo Fgf-5 functions in an autocrine manner to stimulate the mobility of the cells that contribute to the embryonic germ layers or to render them competent to respond to other inductive or positional signals.  相似文献   

7.
Genetic and biochemical data have identified Smad4 as a key intracellular effector of the transforming growth factor beta (TGFbeta superfamily of secreted ligands. In mouse, Smad4-null embryos do not gastrulate, a phenotype consistent with loss of other TGFbeta-related signaling components. Chimeric analysis reveals a primary requirement for Smad4 in the extra-embryonic lineages; however, within the embryo proper, characterization of the specific roles of Smad4 during gastrulation and lineage specification remains limited. We have employed a Smad4 conditional allele to specifically inactivate the Smad4 gene in the early mouse epiblast. Loss of Smad4 in this tissue results in a profound failure to pattern derivatives of the anterior primitive streak, such as prechordal plate, node, notochord and definitive endoderm. In contrast to these focal defects, many well-characterized TGFbeta- and Bmp-regulated processes involved in mesoderm formation and patterning are surprisingly unaffected. Mutant embryos form abundant extra-embryonic mesoderm, including allantois, a rudimentary heart and middle primitive streak derivatives such as somites and lateral plate mesoderm. Thus, loss of Smad4 in the epiblast results not in global developmental abnormalities but instead in restricted patterning defects. These results suggest that Smad4 potentiates a subset of TGFbeta-related signals during early embryonic development, but is dispensable for others.  相似文献   

8.
The understanding of germ layer formation in vertebrates began with classical experimental embryology. Early in the 20th century, Spemann and Mangold (1924) identified a region of the early embryo capable of inducing an entire embryonic axis. Termed the dorsal organizer, the tissue and the activity have been shown to exist in all vertebrates examined. In mice, for example, the activity resides in a region of the gastrula embryo known as the node. Experiments by the Dutch embryologist Nieuwkoop (1967a, 1967b, 1973, 1977) showed that a signal derived from the vegetal half of the amphibian embryo is responsible for the formation of mesoderm. Nieuwkoop's results allowed the development of in vitro assays that led, in the late 1980s and early 1990s, to the identification of growth factors essential for germ layer formation. Through more recent genetic investigations in mice and zebrafish, we now know that one class of secreted growth factor, called Nodal because of its localized expression in the mouse node, is essential for formation of mesoderm and endoderm and for the morphological rearrangements that occur during gastrulation.  相似文献   

9.
10.
11.
12.
13.
We report the expression pattern of a murine homolog of the Xenopus laevis T-box gene Eomesodermin. mEomes expression is first detected in the extra-embryonic ectoderm prior to gastrulation, and persists there until head-fold stages. In the embryo proper, mEomes is expressed throughout the early primitive streak, nascent mesoderm and in the anterior visceral endoderm. Although mEomes expression disappears from the embryo at late-streak stages, a second domain of mEomes expression is observed in the telencephalon beginning around E10.5.  相似文献   

14.
15.
mRNA differential display RT-PCR has been extensively used for the isolation of genes differentially expressed between RNA populations. We have assessed its utility for the identification of developmentally regulated genes in plasmid cDNA libraries derived from individual tissues dissected from early mouse embryos. Using plasmid Southern blot hybridisation as a secondary screen, we are able to identify such genes and show by whole-mount in situ hybridisation that their expression pattern is that expected from the differential display profile.  相似文献   

16.
17.
The node of the mouse gastrula is the major source of the progenitor cells of the notochord, the floor plate, and the gut endoderm. The node may also play a morphogenetic role since it can induce a partial body axis following heterotopic transplantation. The impact of losing these progenitor cells and the morphogenetic activity on the development of the body axes was studied by the ablation of the node at late gastrulation. In the ablated embryo, an apparently intact anterior-posterior body axis with morphologically normal head folds, neural tube, and primitive streak developed during early organogenesis. Cell fate analysis revealed that the loss of the node elicits de novo recruitment of neural ectoderm and somitic mesoderm from the surrounding germ-layer tissues. This leads to the restoration of the neural tube and the paraxial mesoderm. However, the body axis of the embryo was foreshortened and somite formation was retarded. Histological and gene expression studies reveal that in most of the node-ablated embryos, the notochord in the trunk was either absent or interrupted, and the floor plate was absent in the ventral region of the reconstituted neural tube. The loss of the node did not affect the differentiation of the gut endoderm or the formation of the mid- and hindgut. In the node-ablated embryo, expression of the Pitx2 gene in the lateral plate mesoderm was no longer restricted to the left side but was found on both sides of the body or was completely absent from the lateral plate mesoderm. Therefore, the loss of the node results in the failure to delineate the laterality of the body axis. The node and its derivatives therefore play a critical role in the patterning of the ventral neural tube and lateral body axis but not of the anterior-posterior axis during early organogenesis.  相似文献   

18.
Members of the fibroblast growth factor (FGF) family of peptide growth factors are widely expressed in the germ layer derivatives during gastrulation and early organogenesis of the mouse. We have investigated the effect of administering recombinant FGF-4 in the late-primitive streak stage embryo to test if the patterning of the body plan may be influenced by this growth factor. Shortly after FGF treatment the embryonic tissues up-regulated the expression of Brachyury and the RTK signaling regulator Spry2, suggesting that FGF signaling was activated as an immediate response to exogenous FGF. Concomitantly, Hesx1 expression was suppressed in the prospective anterior region of the embryo. After 24 h of in vitro development, embryos displayed a dosage-related suppression of forebrain morphogenesis, disruption of the midbrain-hindbrain partition, and inhibition of the differentiation of the embryonic mesoderm. Overall, development of the anterior-posterior axis in the late gastrula is sensitive to the delivery of exogenous FGF-4. The early response associated with the expression of Spry2 suggests that the later phenotype observed could be primarily related to an inhibition of the FGF signaling pathway.  相似文献   

19.
Previous studies have shown that medaka primordial germ cells (PGC) are first distinguishable by olvas expression during late gastrulation, and that they migrate to the gonadal region through the lateral plate mesoderm. Here, we demonstrate that medaka nanos expression marks the germ line at early gastrulation stage. By marking the germ line with green fluorescent protein (GFP) fused to the nanos 3' untranslated region, we were able to visualize the behavior of PGC using time-lapse imaging. We show that there are three distinct modes of PGC migration that function at different stages of development. At early gastrulation stage, PGC actively migrate towards the marginal zone, a process that requires the function of a chemokine receptor, CXCR4. However, at late gastrulation stage, PGC change the mode and direction of their movement, as they are carried towards the midline along with somatic cells undergoing convergent movements. After aligning bilaterally, PGC actively migrate to the posterior end of the lateral plate mesoderm. This posterior movement depends on the activity of both HMGCoAR and a ligand of CXCR4, SDF-1a. These results demonstrate that PGC undergo different modes of migration to reach the prospective gonadal region of the embryo.  相似文献   

20.
The dorsal-ventral patterning of the Drosophila embryo is controlled by a well-defined gene regulation network. We wish to understand how changes in this network produce evolutionary diversity in insect gastrulation. The present study focuses on the dorsal ectoderm in two highly divergent dipterans, the fruitfly Drosophila melanogaster and the mosquito Anopheles gambiae. In D. melanogaster, the dorsal midline of the dorsal ectoderm forms a single extra-embryonic membrane, the amnioserosa. In A. gambiae, an expanded domain forms two distinct extra-embryonic tissues, the amnion and serosa. The analysis of approximately 20 different dorsal-ventral patterning genes suggests that the initial specification of the mesoderm and ventral neurogenic ectoderm is highly conserved in flies and mosquitoes. By contrast, there are numerous differences in the expression profiles of genes active in the dorsal ectoderm. Most notably, the subdivision of the extra-embryonic domain into separate amnion and serosa lineages in A. gambiae correlates with novel patterns of gene expression for several segmentation repressors. Moreover, the expanded amnion and serosa anlage correlates with a broader domain of Dpp signaling as compared with the D. melanogaster embryo. Evidence is presented that this expanded signaling is due to altered expression of the sog gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号