首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis Stocking of fish from other populations has been commonly employed for enhancement of wild brown trout, Salmo trutta, populations in north Spain. Young hatchery reared brown trout of central European origin were introduced into some Asturian rivers every year since 1984. Based on variation at the isozyme locus LDH-C1* and at the microsatellite locus BFRO 002, two genetic markers race-specific in Salmo trutta, we detected introgression of foreign genomes into native gene pools in some Spanish trout populations where only pure native individuals were present 10 years ago. We strongly suggest development of alternative management policies for conservation of Spanish natural brown trout populations without endangering the traditional recreational fisheries. Jorge I. Izquierdo, Ana G. F. Castillo: These two authors contributed equally to the article.  相似文献   

2.
Crane Prairie Reservoir in the upper Deschutes River Basin has historically supported a wild population of migratory Deschutes River redband trout. Owing to its status as a premier destination for recreational angling in Oregon, the reservoir has been stocked with domesticated hatchery rainbow trout since 1955. In recent years the wild redband trout population has experienced a substantial decline. Effects on productivity related to genetic interaction with naturally spawning hatchery-origin fish (fitness risks) have not been determined. The species Oncorhynchus mykiss has been characterized with substantial genetic diversity throughout the Deschutes River Basin that further heightens the challenge of identifying specific conservation needs of wild populations. A conservation plan for Crane Prairie wild redband trout requires a better understanding of the natural reproductive success of out-of-basin hatchery trout in the reservoir tributaries, and the similarity between Crane Prairie redband trout with other extant redband trout populations in the basin. Using a suite of 17 microsatellite nuclear DNA markers, we evaluated the genetic structure among Crane Prairie Reservoir redband trout, hatchery rainbow trout, and two adjacent populations of redband trout from within the Upper Deschutes River Basin. We observed significant heterogeneity between the hatchery and wild Crane Prairie populations that may reflect differences in life histories, differential productivity and assortative mating. The genetic distinctions observed among the three redband trout populations suggest restricted gene flow and genetic drift within the upper basin. Temporally stratified sampling and larger numbers of samples will be necessary to confirm these conclusions.  相似文献   

3.
Both wild‐ and hatchery‐reared brown trout Salmo trutta , 18 months of age and of the same genetic origin, responded with increased heart rates (tachycardia) to a simulated predator attack on 2 consecutive days. Brown trout reared in the hatchery showed a more rapidly induced tachycardia compared with wild‐reared fish at day 1, but not day 2. During an undisturbed period several hours after attacks, hatchery‐reared brown trout maintained higher heart rates compared to wild‐reared fish on both days. Behavioural responses to the attack were very low for all fish, although hatchery‐reared fish tended to be more active than wild fish after the attack day 2. The observed differences may have had a genetic background caused by different selection regimes in the hatchery‐ and wild‐rearing environments, or could have been due to different phenotypic responses in the two environments.  相似文献   

4.
Baer  J. 《Journal of fish biology》2004,65(S1):314-314
In spring 2001 and 2002 a small stream was stocked with tagged hatchery‐reared yearling brown trout ( Salmo trutta ), in order to study their influence on the resident brown trout population. The stream was separated into six sections: two sections without stocking, two sections where stocking doubled the trout population and two sections where the fish population was quadrupled. The working hypothesis was that due to food limitation (competition) growth of the wild fish will be negatively influenced by stocking, and wild fish will be displaced by the (possibly more aggressive) hatchery fish. Surprisingly, growth rate of wild and stocked fish of the same age was similar and independent of stocking density. Two main reasons may be responsible for this finding: only a low percentage of the stocked fish remained in the stream, and food was not limited during summer. Only 12–19% of the stocked fish were recaptured after six months, in contrats to 40–70% of one‐year old and up to 100% of older wild trout. The wild fish were not displaced by hatchery‐reared fish: During summer the wild fish remained more or less stationary, whereas most of the stocked trout had left their release site. The results indicate that in a natural stream stocking of hatchery reared brown trout does not influence negatively growth and movement of the wild fish independent of stocking density.  相似文献   

5.
Wild steelhead (Oncorhynchus mykiss) typically spend two or more years in freshwater before migrating to sea, but hatchery steelhead are almost ubiquitously released as yearlings. Their large size at release coupled with life history pathways that include both male and female maturation in freshwater present ecological risks different from those posed by hatchery populations of Pacific salmon. Yearling hatchery reared steelhead that fail to attain minimum thresholds for smoltification or exceed thresholds for male maturation tend to ‘residualize’ (i.e., remain in freshwater). Residuals pose ecological risks including size-biased interference competition and predation on juvenile salmon and trout. Three hatchery populations of steelhead in Hood Canal, WA were reared under growth regimes designed to produce a more natural age at smoltification (age-2) to aid in rebuilding their respective natural populations. Mean smolt sizes and size variability at age-2 were within the range of wild smolts for two of the three populations. The third population reared at a different facility under similar temperatures exhibited high growth rate variability and high male maturation rates (20% of all released fish). Experimentally comparing age-1 and age-2 smolt programs will help identify optimal rearing strategies to reduce the genetic risk of domestication selection and reduce residualism rates and associated negative ecological effects on natural populations. Investigations of Winthrop National Fish Hatchery summer-run steelhead will measure a) selection on correlated behavioral traits (‘behavioral syndromes’), b) degree of smoltification, c) changes in hormones that regulate gonad growth at key developmental stages, and d) conduct extensive post-release monitoring of fish reared under each growth regime.  相似文献   

6.
A useful genetic marker exists through the apparent fixation of the LDH-5 * 100 allele in wild populations of brown trout in rivers from Asturias, Spain, contrasted with the near fixation of the LDH-5 * 90 allele in hatchery populations used to stock these rivers. In sampling locations where natural reproduction occurred, the * 100 allele was found exclusively in all areas having no record of hatchery stocking. The * 100 allele also predominated in three stocked areas having natural reproduction; in two of these areas a few individuals of the 0 + age class were homozygous for the * 90 allele. These data indicated that all catchable and reproductive fish originated from indigenous populations and thus the policy of hatchery supplementation was a failure in these areas.  相似文献   

7.
Hatchery propagation of salmonids has been practiced in western North America for over a century. However, recent declines in wild salmon abundance and efforts to mitigate these declines through hatcheries have greatly increased the relative abundance of fish produced in hatcheries. The over-harvest of wild salmon by fishing mixed hatchery and wild stocks has been of concern for many years but genetic interactions between populations, such as hybridization, introgression and outbreeding depression, may also compromise the sustainability of wild populations. Our goal was to examine whether a newly established hatchery population of steelhead trout successfully reproduced in the wild and to compare their rate of reproductive success to that of sympatrically spawning native steelhead. We used eight microsatellite loci to create allele frequency profiles for baseline hatchery and wild populations and assigned the smolt (age 2) offspring of this parental generation to a population of origin. Adults originating from a generalized hatchery stock artificially selected for early return and spawning date were successful at reproducing in Forks Creek, Washington. Although hatchery females (N = 90 and 73 in the two consecutive years of the study) produced offspring that survived to emigrate as smolts, they produced only 4.4–7.0% the number produced per wild female (N = 11 and 10). This deficit in reproductive success implies that the proportion of hatchery genes in the mixed population may diminish since deliberate releases into the river have ceased. This hypothesis is being tested in a long-term study at Forks Creek.  相似文献   

8.
Hatchery‐reared adult brown trout, Salmo trutta v. fario L., [215–335 mm standard length (LS), n = 82] were individually tagged and released into three sections of the Blanice River in May 2007. Wild populations of brown trout and grayling, Thymallus thymallus, L., in these sections and three non‐stocked control sections were also tagged. The recapture rate of hatchery‐reared adult brown trout after 6 months (18%, n = 15) was comparable to that of wild adult brown trout in stocked (15%, n = 14) and control (14%, n = 11) sections. The recapture rates of wild brown trout and grayling after 6 months were higher in control sections than in stocked sections, but the differences were not significant. The movement of recaptured large juvenile wild brown trout from stocked sections was significantly higher (36%) than from control sections (9%). Wild brown trout growth and grayling growth were unaffected by stocking with adult hatchery‐reared brown trout.  相似文献   

9.
The Caspian Sea, the largest inland closed water body in the world, has numerous endemic species. The Caspian brown trout (Salmo trutta caspius) is considered as endangered according to IUCN criteria. Information on phylogeography and genetic structure is crucial for appropriate management of genetic resources. In spite of the huge number of studies carried out in the Salmo trutta species complex across its distribution range, very few data are available on these issues for S. trutta within the Caspian Sea. Mitochondrial (mtDNA control region) and nuclear (major ribosomal DNA internal transcribed spacer 1, ITS-1, and ten microsatellite loci) molecular markers were used to study the phylogeography, genetic structure, and current captive breeding strategies for reinforcement of Caspian trout in North Iranian rivers. Our results confirmed the presence of Salmo trutta caspius in this region. Phylogenetic analysis demonstrated its membership to the brown trout Danubian (DA) lineage. Genetic diversity of Caspian brown trout in Iranian Rivers is comparable to the levels usually observed in sustainable anadromous European brown trout populations. Microsatellite data suggested two main clusters connected by gene flow among river basins likely by anadromous fish. No genetic differences were detected between the hatchery sample and the remaining wild populations. While the current hatchery program has not produced detectable genetic changes in the wild populations, conservation strategies prioritizing habitat improvement and recovering natural spawning areas for enhancing wild populations are emphasized.  相似文献   

10.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout ( Salmo trutta ) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.  相似文献   

11.
In this study, we contrast brain morphology from hatchery and wild reared stocks to examine the hypothesis that in salmonid fishes, captive rearing produces changes in brain development. Using rainbow trout, Oncorhynchus mykiss, as a model, we measured eight regions of the salmonid brain to examine differences between wild and hatchery reared fish. We find using multiple analysis of covariance (MANCOVA), analysis of covariance (ANCOVA) and discriminant function analysis (DFA) that the brains of hatchery reared fish are relatively smaller in several critical measures than their wild counterparts. Our work may suggest a mechanistic basis for the observed vulnerability of hatchery fish to predation and their general low survival upon release into the wild. Our results are the first to highlight the effects of hatchery rearing on changes in brain development inbreak fishes.  相似文献   

12.
SUMMARY 1. The large microgeographical differentiation revealed by allozyme studies in brown trout ( Salmo trutta) populations is one of the most striking features of this species. Additionally, allozymes showed great genetic differences between Atlantic and Mediterranean populations on a macrogeographical scale.
2. This study was carried out in order to assess whether the great differences observed between Atlantic and Mediterranean populations persisted where the two are geographically close (the 'microgeographical scale'). Sixteen populations of brown trout, S. trutta , were screened for genetic variation at 25 allozyme loci. The sampling sites, which occupied a relatively small geographical area, were distributed across Cantabrian (Atlantic) and Mediterranean drainages in Northern Spain.
3. The neighbour-joining tree, inferred from Nei's genetic distance, showed that brown trout populations clustered into two different groups. These groups corresponded to the Cantabrian and the Mediterranean groups of populations, although no clear geographical pattern emerged within each of the groups. This geographical pattern is basically caused by significant differences in the frequency distribution of the CK-A1 * locus, with a higher frequency of * 115 in Cantabrian samples (0.586 ± 0.091) while allele * 100 was more frequent in Mediterranean samples (0.931 ± 0.038). In addition, this study revealed alleles exclusive to the Mediterranean and Cantabrian populations, agreeing with previous findings.
4. Genetic differentiation between Cantabrian and Mediterranean regions (14.19%) was similar to that estimated in Spain at a larger scale (13%), showing that most of the differences between the regions can be observed even in a small geographical area.  相似文献   

13.
Survival rates and growth parameters of hatchery‐reared sea trout (Salmo trutta trutta L.) fry were determined after stocking in the wild. The larvae were hatchery‐reared for 12 weeks in two groups: fry were fed either on live zooplankton and live chironomidae larvae (LFG), or fed a pellet diet (PFG). The survival rate and specific growth rates were higher in the LFG than in the PFG group. Most effective for hatchery‐reared fish intended for stocking was the natural, live feed. The mean number of chironomid larvae found in the stomachs of fish that were initially captured in the wild was significantly higher in the LFG than in the PFG group. The live diet supplied in the rearing period had a positive impact on the foraging skills of the sea trout fry and their survival in the wild after their release on 24 April 2010.  相似文献   

14.
Captive bred individuals are often released into natural environments to supplement resident populations. Captive bred salmonid fishes often exhibit lower survival rates than their wild brethren and stocking measures may have a negative influence on the overall fitness of natural populations. Stocked fish often stem from a different evolutionary lineage than the resident population and thus may be maladapted for life in the wild, but this phenomenon has also been linked to genetic changes that occur in captivity. In addition to overall loss of genetic diversity via captive breeding, adaptation to captivity has become a major concern. Altered selection pressure in captivity may favour alleles at adaptive loci like the Major Histocompatibility Complex (MHC) that are maladaptive in natural environments. We investigated neutral and MHC-linked genetic variation in three autochthonous and three hatchery populations of Austrian brown trout (Salmo trutta). We confirm a positive selection pressure acting on the MHC II β locus, whereby the signal for positive selection was stronger in hatchery versus wild populations. Additionally, diversity at the MHC II β locus was higher, and more uniform among hatchery samples compared to wild populations, despite equal levels of diversity at neutral loci. We postulate that this stems from a combination of stronger genetic drift and a weakening of positive selection at this locus in wild populations that already have well adapted alleles for their specific environments.  相似文献   

15.
The supportive breeding programme for sea trout (Salmo trutta) in the River Dalälven, Sweden, is based on a sea‐ranched hatchery stock of local origin that has been kept ‘closed’ to the immigration of wild genes since the late 1960s (about seven generations). In spite of an apparent potential for substantial uni directional gene flow from sea‐ranched to wild (naturally produced) trout, phenotypic differences with a presumed genetic basis have previously been observed between the two ‘stocks’. Likewise, two previous studies of allozyme and mitochondrial DNA variation based on a single year of sampling have indicated genetic differentiation. In the present study we used microsatellite and allozyme data collected over four consecutive years, and tested for the existence of overall genetic stock divergence while accounting for temporal heterogeneity. Statistical analyses of allele frequency variation (F‐statistics) and multilocus genotypes (assignment tests) revealed that wild and sea‐ranched trout were significantly different in three of four years, whereas no overall genetic divergence could be found when temporal heterogeneity among years within stocks was accounted for. On the basis of estimates of effective population size in the two stocks, and of FST between them, we also assessed the level of gene flow from sea‐ranched to wild trout to be ≈ 80% per generation (with a lower confidence limit of ≈ 20%). The results suggest that the reproductive success of hatchery and naturally produced trout may be quite similar in the wild, and that the genetic characteristics of the wild stock are largely determined by introgressed genes from sea‐ranched fish.  相似文献   

16.
Juvenile brown trout Salmo trutta from natural populations reacted to the presence of piscivorous brown trout by increasing the use of refuges. In contrast, second‐generation hatchery fish and the offspring of wild fish raised under hatchery conditions were insensitive to predation risk. The diel pattern of activity also differed between wild and hatchery brown trout. Second‐generation hatchery fish were predominantly active during daytime regardless of risk levels. Wild fish, however, showed a shift towards nocturnal activity in the presence of predators. These findings emphasize the potential role of domestication in weakening behavioural defences. They support the idea that the behavioural divergence between wild and domesticated individuals can arise from a process of direct or indirect selection on reduced responsiveness to predation risk, or as a lack of previous experience with predators.  相似文献   

17.
Vertebrate populations at the periphery of their range can show pronounced genetic drift and isolation, and therefore offer unique challenges for conservation and management. These populations are often candidates for management actions such as translocations that are designed to improve demographic and genetic integrity. This is particularly true of coldwater species like brook trout (Salvelinus fontinalis), whose numbers have declined greatly across its historic range. At the southern margin, remnant wild populations persist in isolated headwater streams, and many have a history of receiving translocated individuals through either stocking of hatchery reared fish, relocation of wild fish, or both during restoration attempts. To determine current genetic integrity and resolve the genetic effects of past management actions for brook trout populations in SC, USA, we genetically assessed all 18 documented remaining brook trout populations along with individuals acquired from six hatcheries with recorded stocking events in SC. Our results indicated that six of the 18 streams showed signs of hatchery admixture (range 57–97%) and restored patches retained genetic signatures from multiple source populations. Populations had among the lowest genetic diversity (min average HE?=?0.147) and effective number of breeders (mean Nb?=?31.2) estimates observed throughout the native brook trout range. Populations were highly differentiated (mean pair-wise FST?=?0.396), and substantial genetic divergence was evident across major river drainages (max pair-wise FST?=?0.773). The lowest local genetic diversity and highest genetic differentiation ever reported for this species make its conservation a challenging task, particularly when combined with other threats such as climate change and non-native species. We offer recommendations on managing peripheral populations with depleted genetic characteristics and provide a reference for determining which existing populations will best serve as sources for future translocation efforts aimed at enhancing or restoring wild brook trout genetic integrity.  相似文献   

18.
The level of aggressive behaviour in three populations of grayling Thymallus thymallus was lower in the hatchery strains than in the wild strains at the age of 0+ years. Due to similar rearing conditions, genetic divergence of the strains was most likely. As the hatchery fish used were second generation hatchery fish, this suggested that genetic changes in the hatchery can be very rapid. Therefore, it would be beneficial to use the progeny of wild fish for re-introductions. Differences in aggressiveness between the strains still existed at the age of 1+ years, when the strains had been reared under common hatchery conditions for a year. A relatively short period in the hatchery may maintain the original behavioural characteristics of the fish and thus give the best possible basis for survival in the natural environment.  相似文献   

19.
唐鱼(Tanichthys albonubes)是为数不多的几种原产中国的世界性观赏鱼类之一。自2003年以来, 多个唐鱼野生种群相继被发现, 其濒危状态和等级由野外灭绝降为极危。为研究唐鱼养殖种群与广州附近野生种群之间的遗传关系, 本文分析了唐鱼3个代表性养殖种群和4个野生种群, 共计186个样本的Cyt b基因、2个核基因(ENC1RAG1)以及13个微卫星位点数据。基于K2P模型的遗传距离结果显示, 唐鱼野生种群间的遗传距离在0.005-0.015之间, 养殖种群间的遗传距离为0.001-0.009。系统发育分析表明, 唐鱼养殖种群包含4个单倍型谱系分支, 其中2个分别与广州附近2个野生种群聚在一起, 另外2个分别独立成支。单倍型网络亲缘关系分析显示, 清远种群只有1个单倍型且与芳村养殖种群共享, 芳村养殖种群拥有最多的单倍型。基于微卫星数据的STRUCTURE分析表明, 所有种群最佳分簇数为2, 清远种群与养殖种群聚为一簇, 良口和石门种群聚为另一簇。主成分分析结果显示, 养殖种群高度重叠并能与野生种群分开, 清远种群与养殖种群存在部分重叠。利用IMa3的基因流分析表明, 存在清远种群至芳村养殖种群的单向基因流。综合本文结果, 作者认为唐鱼养殖种群应起源于广州附近多个野生种群。清远种群来源于养殖种群中的芳村养殖种群。建议在未来唐鱼的保护策略中, 应禁止不规范的放流活动并且禁止将不同野生种群补充至养殖种群, 同时加强唐鱼养殖种群和野生种群的遗传资源管理和持续监测。  相似文献   

20.
Studies of interactions between farmed and wild salmonid fishes have suggested reduced fitness of farmed strains in the wild, but evidence for selection at the genic level is lacking. We studied three brown trout populations in Denmark which have been significantly admixed with stocked hatchery trout (19–64%), along with two hatchery strains used for stocking. The wild populations were represented by contemporary samples (2000–2006) and two of them by historical samples (1943–1956). We analysed 61 microsatellite loci, nine of which showed putative functional relationships [expressed sequence tag (EST)‐linked or quantitative trait loci]. FST‐based outlier tests provided support for diversifying selection at chromosome regions marked by three loci, two anonymous and one EST‐linked. Patterns of differentiation suggested that the loci were candidates for being under diversifying hitch‐hiking selection in hatchery vs. wild environments. Analysis of hatchery strain admixture proportions showed that in one wild population, two of the loci showed significantly lower admixture proportions than the putatively neutral loci, implying contemporary selection against alleles introduced by hatchery strain trout. In the most strongly admixed population, however, there was no evidence for selection, possibly because of immigration by stocked trout overcoming selection against hatchery‐derived alleles or supportive breeding practices allowing hatchery strain trout to escape natural selection. To our knowledge, this is the first study demonstrating footprints of selection in wild salmonid populations subject to spawning intrusion by farmed fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号