首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three mAb to human C9, X195, X197, and P40 were used to analyze the roles of the C9a and C9b domains in the reaction of the C9 molecule with sensitized sheep E bearing C1 to C8 (EAC1-8). X195 bound to NH2-terminal (C9a) fragments, and X197 bound to COOH-terminal (C9b) fragments obtained by cleavage of C9 with alpha-thrombin or trypsin. P40 recognized the epitope on the C9b fragment obtained by alpha-thrombin cleavage but did not react with the NH2-terminal or COOH-terminal fragment obtained by trypsin cleavage. In this respect, P40 differed from mAb to C9 reported previously. P40 almost completely inhibited the hemolytic activity of C9. X195 and X197 also inhibited C9 activity, but less effectively than P40. C9 molecules bound to P40 could not bind to EAC1-8 cells. C9 bound to X197 could not bind rapidly to EAC1-8, but prolonged incubation of the C9-X197 complex with EAC1-8 caused considerable lysis of the cells. C9 molecules bound to X195 could bind rapidly to EAC1-8, but their lytic activity was partially inhibited by the bound antibody. From these results, it is concluded that the C9b but not C9a domain contributes to the binding of C9 to EAC1-8 and that the epitope recognized by P40 or a closely adjacent site may be the binding site of C9 molecule to EAC1-8.  相似文献   

2.
Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.  相似文献   

3.
We report here that complement receptor type one (CR1) binds to a region of C3b that is contained within the NH2 terminus of the alpha' chain. In an enzyme-linked immunosorbent assay, CR1 bound to C3b, iC3b, and C3c but not to C3d, and this binding was inhibited by soluble C3b and C3c. Further attempts to generate a small C3 fragment capable of binding CR1 were unsuccessful. However, elastase degradation of C3 generated four species of C3c (C3c I-IV), two of which bound CR1. NH2-terminal sequence analysis and sodium dodecyl sulfate-gel electrophoresis of the C3cs indicated that the beta chains and the 40,000-dalton COOH-terminal alpha' chain fragments were identical; the NH2-terminal alpha' chain fragments of C3c I-IV varied from 21,000 to 27,000 daltons and accounted for the differential binding to CR1. C3c-I and II, which do not bind CR1, were missing 8 and 9 residues from the NH2 terminus of the alpha' chain when compared with the intact alpha' chain of C3b. C3c-III and IV, which bind CR1, had NH2 termini identical to the intact NH2-terminal alpha' chain of C3b. Using iodinated concanavalin A and endoglycosidase H, we showed that the NH2-terminal alpha' chains of C3c-I and III were glycosylated, while C3c-II and IV were not. Therefore, these data indicated that the amino terminus of the NH2-terminal alpha' chain fragment of C3c was responsible for binding CR1 while the COOH terminus of this fragment was not involved since the presence or absence of this region in C3c did not affect CR1 binding to C3c. Subsequently, two peptides were synthesized from the NH2-terminal alpha' chain fragment of C3c: X42, 42 residues in length from the NH2 terminus and C30, 30 residues in length from the COOH terminus. X42 inhibited binding of CR1 to C3b, and this effect was also observed with antipeptide antibodies against the X42 peptide. The C30 and other C3-derived peptides and antipeptide antibodies had no effect on the binding of CR1 to C3b.  相似文献   

4.
Domain structure of the HSC70 cochaperone, HIP.   总被引:1,自引:0,他引:1  
The domain structure of the HSC70-interacting protein (HIP), a 43-kDa cytoplasmic cochaperone involved in the regulation of HSC70 chaperone activity and the maturation of progesterone receptor, has been probed by limited proteolysis and biophysical and biochemical approaches. HIP proteolysis by thrombin and chymotrypsin generates essentially two fragments, an NH2-terminal fragment of 25 kDa (N25) and a COOH-terminal fragment of 18 kDa (C18) that appear to be well folded and stable as indicated by circular dichroism and recombinant expression in Escherichia coli. NH2-terminal amino acid sequencing of the respective fragments indicates that both proteases cleave HIP within a predicted alpha-helix following the tetratricopeptide repeat (TPR) region, despite their different specificities and the presence of several potential cleavage sites scattered throughout the sequence, thus suggesting that this region is particularly accessible and may constitute a linker between two structural domains. After size exclusion chromatography, N25 and C18 elute as two distinct and homogeneous species having a Stokes radius of 49 and 24 A, respectively. Equilibrium sedimentation and sedimentation velocity indicate that N25 is a stable dimer, whereas C18 is monomeric in solution, with sedimentation coefficients of 3.2 and 2.3 S and f/f(o) values of 1.5 and 1.1 for N25 and C18, respectively, indicating that the N25 is elongated whereas C18 is globular in shape. Both domains are able to bind to the ATPase domain of HSC70 and inhibit rhodanese aggregation. Moreover, their effects appear to be additive when used in combination, suggesting a cooperation of these domains in the full-length protein not only for HSC70 binding but also for chaperone activity. Altogether, these results indicate that HIP is made of two structural and functional domains, an NH2-terminal 25-kDa domain, responsible for the dimerization and the overall asymmetry of the molecule, and a COOH-terminal 18-kDa globular domain, both involved in HSC70 and unfolded protein binding.  相似文献   

5.
DNA regions encoding the various domains of a protein can be expressed as separate entities by inserting at appropriate sites a 'STOP-Shine-Dalgarno-sequence-ATG' cassette encoding a termination codon, a Shine-Dalgano sequence and an initiation codon within the structural gene. This technique has been used to obtain a 137-amino-acid-residue pore-forming protein designated DA70C comprising the final 136-amino-acid-residue COOH-terminal of colicin A preceded by an NH2-terminal methionine. Da70C was correctly expressed but poorly released to the extracellular medium. Its purification involved, as a final step, a partition in Triton X-114 thus demonstrating that hydrophobic regions are exposed in this protein. The ability of DA70C to form ion channels in planar lipid bilayers was investigated and pore properties were analyzed. The results indicate that helices 1-3 of the 204-amino-acid-residue colicin pore-forming domain (containing 10 alpha-helices) are not involved in ion conduction through the channel. However, they are important in maintaining the stability of the soluble state of the COOH-terminal domain.  相似文献   

6.
The inhibitory effect of calmodulin on the assembly of mature and immature rat brain microtubules was compared with that of the two major structural domains of this protein, the COOH-terminal fragment (amino acids 78-148) and the NH2-terminal fragment (amino acids 1-77), to determine the calmodulin structural domain responsible for the inhibitory effect on microtubule assembly. Microtubules prepared during the early stages of brain development, i.e., during intensive neurite outgrowth, are more sensitive to inhibition by the Ca2(+)-calmodulin complex than those obtained from adult brain. Significant inhibition of immature microtubule assembly was observed with both fragments in the absence of Ca2+, but the effects were more important when Ca2+ was present. With adult brain microtubules, the two fragments remained without effect on assembly in the absence of Ca2+, whereas some inhibition was seen in its presence but only with the COOH-terminal polypeptide. Under all these conditions, the COOH-terminal fragment was always more active than the NH2-terminal fragment on microtubule polymerization, albeit to a lesser extent than native calmodulin.  相似文献   

7.
A COOH-terminal tryptic fragment (Mr approximately equal to 20,000) of colicin E1 has been proposed to contain the membrane channel-forming domain of the colicin molecule. A comparison is made of the conductance properties of colicin E1 and its COOH-terminal fragment in planar bilayer membranes. The macroscopic and single channel properties of colicin E1 and its COOH-terminal tryptic fragment are very similar, if not indistinguishable, implying that the NH2-terminal, two-thirds of the colicin E1 molecule, does not significantly influence its channel properties. The channel-forming activity of both polypeptides is dependent upon the presence of a membrane potential, negative on the trans side of the membrane. The average single channel conductance of colicin E1 and the COOH-terminal fragment is 20.9 +/- 3.9 and 19.1 +/- 2.9 picosiemens, respectively. The rate at which both proteins form conducting channels increases as the pH is lowered from 7 to 5. Both molecules require negatively charged lipids for activity to be expressed, exhibit the same ion selectivity, and rectify the current to the same extent. Both polypeptides associate irreversibly with the membrane in the absence of voltage, but subsequent formation of conducting channels requires a negative membrane potential.  相似文献   

8.
Characterization of parathyroid hormone fragments produced by cathepsin D   总被引:2,自引:0,他引:2  
Cleavage of parathyroid hormone by cathepsin D was studied. Four primary products were detected and separated by high performance liquid chromatography. Two of the fragments are fluorescent and therefore contain residue 23 (tryptophan). These fragments are NH2-terminal in origin. The other two cross-react with antisera directed against COOH-terminal portions of the hormone; they are the complementary COOH-terminal fragments. Microsequencing and amino acid analysis showed that the two COOH-terminal fragments are 35-84 and 38-84 bovine parathyroid hormone. By CNBr cleavage and amino acid analysis, the two NH2-terminal fragments were shown to be the complementary 1-37 and 1-34 fragments. The 1-37 fragment is transitory and is rapidly hydrolyzed to 1-34, so that only relatively small amounts are detected at any one time. However, 34-84 was not converted to 38-84, although cleavage at other sites in the COOH-terminal fragments was observed with more exhaustive digestion. The 1-34 fragment appears to be the final product of the action of cathepsin D on parathyroid hormone. Both enzymatically produced NH2-terminal fragments were fully active in the renal membrane adenylyl cyclase assay system.  相似文献   

9.
Calcium sensitive actin severing protein, adseverin, with Mr 74,000, was cleaved into two fragments of Mr 42,000 and Mr 39,000 by V8 protease and trypsin, and both fragments were purified by high performance (pressure) liquid chromatography ion-exchange column chromatography. To understand how adseverin can sever actin filaments, we identified the actin-binding domains. The NH2 termini of native adseverin and the Mr 42,000 fragment were confirmed to be blocked by amino acid sequencing. Twelve amino acids of the Mr 39,000 fragment were sequenced from the NH2 terminus; the sequence of this part had a homology to the hinge region between segments 3 and 4 of gelsolin and villin. Thus, the Mr 42,000 fragment is the NH2-terminal half (N42), and the Mr 39,000 fragment is the COOH-terminal half (C39). Each fragment was examined for actin-severing, -nucleating, -capping, and phospholipid binding activities with and without calcium. N42 contained a calcium-dependent actin-severing activity regulated by phospholipid. C39 bound to G-actin in a calcium-dependent manner, but had no severing activity. The sequence homology and similar functional domain structure suggest a common structural basis for the calcium- and phospholipid-regulated actin-severing properties shared by adseverin, gelsolin, and villin.  相似文献   

10.
Modeling the ion channel structure of cecropin.   总被引:11,自引:0,他引:11       下载免费PDF全文
Atomic-scale computer models were developed for how cecropin peptides may assemble in membranes to form two types of ion channels. The models are based on experimental data and physiochemical principles. Initially, cecropin peptides, in a helix-bend-helix motif, were arranged as antiparallel dimers to position conserved residues of adjacent monomers in contact. The dimers were postulated to bind to the membrane with the NH2-terminal helices sunken into the head-group layer and the COOH-terminal helices spanning the hydrophobic core. This causes a thinning of the top lipid layer of the membrane. A collection of the membrane bound dimers were then used to form the type I channel structure, with the pore formed by the transmembrane COOH-terminal helices. Type I channels were then assembled into a hexagonal lattice to explain the large number of peptides that bind to the bacterium. A concerted conformational change of a type I channel leads to the larger type II channel, in which the pore is formed by the NH2-terminal helices. By having the dimers move together, the NH2-terminal helices are inserted into the hydrophobic core without having to desolvate the charged residues. It is also shown how this could bring lipid head-groups into the pore lining.  相似文献   

11.
The two protomers of the purified regulatory subunit from porcine cAMP-dependent protein kinase I have been shown to be covalently cross-linked by interchain disulfide bonding. Limited proteolysis which cleaves the polypeptide chain into two fragments demonstrated that the disulfide bonding was associated exclusively with the fragment that corresponded to the NH2-terminal region of the polypeptide chain. This NH2-terminal fragment accounted for approximately 15 to 20% of the molecule. The disulfide bonding was further characterized by alkylating the cysteines in the native regulatory subunit. Following oxidation with performic acid, each regulatory subunit contained 7 cysteic acid residues; however, under denaturing conditions, but without prior reduction, only 5 cysteine residues could be alkylated with iodoacetic acid. Following limited proteolysis, all five of these cysteines were associated with the larger COOH-terminal, cAMP binding domain. In contrast, if the denatured subunit was first reduced prior to alkylation, all 7 cysteine residues were alkylated. The 2 cysteines that were only accessible to alkylation after prior reduction were both associated with the NH2-terminal end of the polypeptide chain ultimately with a 5,400 peptide. Alkylation of the isolated, denatured NH2-terminal domain with iodoacetic acid resulted in no covalent modification unless the fragment was first reduced with dithiothreitol. The NH2-terminal and COOH-terminal domains were shown to be linked by a region of the polypeptide chain that is rich in both proline and arginine. It is the arginine-rich site that is readily prone to proteolytic cleavage.  相似文献   

12.
Purified human C9 was treated separately with three proteolytic enzymes: trypsin, plasmin, and alpha-thrombin, and the digestion products were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Trypsin initially cleaved the Mr = 71,000 C9 to produce a Mr = 47,000 fragment plus numerous smaller fragments and prolonged digestion reduced the molecule to small polypeptides. Plasmin produced a Mr = 37,000 fragment which was stable to further digestion, plus fragments smaller than Mr = 10,000. Human alpha-thrombin cleaved C9 (7.8% carbohydrate) at a single internal site to produce a Mr = 37,000 fragment (11.3% carbohydrate) and a Mr = 34,000 fragment (3.9% carbohydrate). Statistical analysis of the amino acid compositions of the fragments and alkaline polyacrylamide gel electrophoresis showed that C9 is highly amphiphilic; the Mr = 34,000 fragment contains a majority of the acidic amino acids and migrates rapidly on alkaline gels; the Mr = 37,000 fragment is hydrophobic with a slow electrophoretic mobility. The two fragments remain noncovalently associated, but were separated by sodium dodecyl sulfate-hydroxylapatite chromatography. The NH2-terminal sequence analysis of native C9, of alpha-thrombin-cleaved C9, and for the isolated fragments showed that the acidic Mr = 34,000 fragment is the NH2-terminal C9a domain and the more hydrophobic Mr = 37,000 fragment is the carboxyl-terminal C9b domain. Hemolytic activity of C9 was unaffected by alpha-thrombin cleavage.  相似文献   

13.
Limited pepsin digestion of human plasma albumin at pH 3.5 and 0 degrees in the presence of octanoate caused cleavage at residue 307 of the albumin molecule to yield two fragments. Thw two fragments corresponding to the NH2- and the COOH-terminal halves of the molecule were isolated in yields of about 15%. The COOH-terminal fragment is a mixture in which about 85% of the molecules had an additional cleavage at residue 422 of the albumin molecule. The COOH-terminal fragment with the additional cleavage at residue 422 contains two peptides which are linked by a disulfide bridge at residues 391 and 437 of the albumin molecule. Both the NH2- and the COOH-terminal fragment of human albumin showed no detectable binding of octanoate anions, that is, less than 1/170 of the binding constant of the primary site of human albumin. These findings differ from earlier observations on limited pepsin digestion of bovine plasma albumin where the corresponding COOH-terminal fragment had the octanoate-binding activity, about 1/8 of the primary binding constant of bovine albumin, while the NH2-terminal fragment did not. The COOH-terminal fragment of bovine albumin did not have cleavage at residue 422 as in the corresponding fragment of human albumin. However, it is not clear that the loss of octanoate-binding activity of fragment C of human albumin is a direct consequence of the cleavage at residue 422.  相似文献   

14.
Staphylocoagulase-binding region in human prothrombin   总被引:4,自引:0,他引:4  
A staphylocoagulase-binding region in human prothrombin was studied by utilizing several fragments prepared from prothrombin by limited proteolysis. Bovine prothrombin, prethrombin 1, prethrombin 2, and human diisopropylphosphorylated alpha-thrombin strongly inhibited formation of the complex ("staphylothrombin") between human prothrombin and staphylocoagulase, but bovine prothrombin fragment 1 and fragment 2 had no effect on the complex formation, indicating that the binding region of human prothrombin for staphylocoagulase is located in the prethrombin 2 molecule. To identify further the staphylocoagulase-binding region, human alpha-thrombin was cleaved into the NH2-terminal large fragment (Mr = 26,000) and the COOH-terminal fragment (Mr = 16,000) by porcine pancreatic elastase. Of these fragments, the COOH-terminal fragment, which includes Asn-200 to the COOH-terminal end of the alpha-thrombin molecule, partially inhibited the complex formation between staphylocoagulase and human prothrombin. In contrast, the NH2-terminal large fragment did not show any inhibitory effect on the staphylothrombin formation. These results suggest that the staphylocoagulase interacts with human prothrombin through the COOH-terminal region of alpha-thrombin B chain. Other plasma proteins, factor X, factor IX, protein C, protein S, protein Z, all of which are structurally similar to prothrombin, did not inhibit the staphylothrombin formation at all, indicating that a specific interaction site with staphylocoagulase is contained only in the prothrombin molecule.  相似文献   

15.
The actin filament-severing domain of plasma gelsolin   总被引:20,自引:10,他引:10       下载免费PDF全文
Gelsolin, a multifunctional actin-modulating protein, has two actin-binding sites which may interact cooperatively. Native gelsolin requires micromolar Ca2+ for optimal binding of actin to both sites, and for expression of its actin filament-severing function. Recent work has shown that an NH2-terminal chymotryptic 17-kD fragment of human plasma gelsolin contains one of the actin-binding sites, and that this fragment binds to and severs actin filaments weakly irrespective of whether Ca2+ is present. The other binding site is Ca2+ sensitive, and is found in a chymotryptic peptide derived from the COOH-terminal two-thirds of plasma gelsolin; this fragment does not sever F-actin or accelerate the polymerization of actin. This paper documents that larger thermolysin-derived fragments encompassing the NH2-terminal half of gelsolin sever actin filaments as effectively as native plasma gelsolin, although in a Ca2+-insensitive manner. This result indicates that the NH2-terminal half of gelsolin is the actin-severing domain. The stringent Ca2+ requirement for actin severing found in intact gelsolin is not due to a direct effect of Ca2+ on the severing domain, but indirectly through an effect on domains in the COOH-terminal half of the molecule to allow exposure of both actin-binding sites.  相似文献   

16.
The binding of pyridoxal 5'-phosphate (PLP) to bovine serum albumin (BSA), and to large BSA fragments obtained after proteolytic hydrolysis, was investigated in order to study the structure of these fragments in relation to the albumin structure itself, and to get information about the PLP binding sites on albumin. From absorbance and circular dichroism spectra, combined with peptide mapping of the tryptic digests of the reduced PLP-protein complexes, it could be concluded that the primary binding site is localized with the NH2-terminal part of the albumin molecule. The COOH-terminal part contains one or more secondary sites. It appeared that in albumin and in the largest NH2-terminal fragment, the environment of the primary binding site is rather apolar in character. However, in the smallest NH2-terminal fragment this site is more exposed to the solvent. This suggests that the part of the peptide chain which is not common in both fragments has a stabilizing effect on the structure around the primary binding site.  相似文献   

17.
A monoclonal antibody directed against the beta-subunit of dog kidney Na+,K+-ATPase was generated. Immunoblots demonstrate that monoclonal antibody III 18A binds exclusively to the denaturated beta-subunit. Binding experiments with membranes and whole cells reveal that III 18A binds to membranes but not to whole cells, indicating that the antibody binds to a cytoplasmic domain on the native beta-subunit. To localize the antibody-binding epitope, purified membrane-bound enzyme was fragmented by protease treatment. Tryptic digestion yields a 30-kDa fragment of the beta-subunit, which still retains the binding capacity for the antibody. Thus III 18A probably does not bind to the NH2-terminal segment of the protein. On the other hand, fragmentation of the beta-subunit with low concentrations of papain, which is known to yield a 40-kDa NH2-terminal and a 16-kDa COOH-terminal fragment, results in a complete loss of III 18A binding. These results suggest that the antibody-binding epitope is localized at or near a papain cleavage site on the COOH-terminal part of the beta-subunit. This is inconsistent with a structure model of the beta-subunit containing only a single transmembrane hydrophobic segment with a cytoplasmic NH2-terminal portion, but agrees quite well with a hypothetical structure with four intramembrane segments.  相似文献   

18.
Tractin is a member of the L1 family of cell adhesion molecules in leech. Immunoblot analysis suggests that Tractin is constitutively cleaved in vivo at a proteolytic site with the sequence RKRRSR. This sequence conforms to the consensus sequence for cleavage by members of the furin family of convertases, and this proteolytic site is shared by a majority of other L1 family members. We provide evidence with furin-specific inhibitor experiments, by site-specific mutagenesis of Tractin constructs expressed in S2 cells, as well as by Tractin expression in furin-deficient LoVo cells that a furin convertase is the likely protease mediating this processing. Cross-immunoprecipitations with Tractin domain-specific antibodies suggest that the resulting NH(2)- and COOH-terminal cleavage fragments interact with each other and that this interaction provides a means for the NH(2)-terminal fragment to be tethered to the membrane. Furthermore, in S2 cell aggregation assays we show that the NH(2)-terminal fragment is necessary for homophilic adhesion and that cells expressing only the transmembrane COOH-terminal fragment are non-adhesive. However, tethering of exogeneously provided Tractin NH(2)-terminal fragment to S2 cells expressing only the COOH-terminal fragment can functionally restore the adhesive properties of Tractin.  相似文献   

19.
The primary structure of the procoagulant- and prothrombin-binding domains, the 43- and 30-kDa fragments previously isolated from staphylocoagulase, has been determined by sequencing peptides derived from various chemical (CNBr and 2-(2-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine) and enzymatic (trypsin and alpha-chymotrypsin) cleavages. Carboxypeptidase Y was also used to deduce the COOH-terminal sequence. The 43-kDa fragment contained 324 amino acids and had a calculated molecular weight of 38,098. It included the entire structure of the 30-kDa fragment located in the COOH-terminal portion (positions 126-324). The 43-kDa fragment had an unusual amino acid composition based on the sequence, in which the sum of Asp (28 residues), Asn (22), Glu (35), Gln (9), and Lys (52) residues accounted for more than 45% of the total. In addition, the frequent occurrence of repetitions of the various kinds of dipeptides was found along the whole sequence. Structural comparison of the NH2-terminal portion of the 43-kDa fragment of staphylocoagulase with that of streptokinase did not reveal any obvious sequence homologies. There was also no sequence homology with that of trypsin, alpha-chymotrypsin, and elastase.  相似文献   

20.
Half of the protein S in plasma is present as a complex with a C4b-binding protein (C4bp), a complement component (Mr 570,000). In this study, the protein S-binding site on C4bp was examined by using monoclonal anti-C4bp-IgGs. C4bp was cleaved by chymotryptic digestion into seven NH2-terminal arm fragments (Mr 48,000) and a COOH-terminal core fragment (Mr 160,000). The COOH-terminal fragment inhibited the cofactor activity of protein S and its binding to C4bp in a dose-dependent manner. A monoclonal anti-C4bp-IgG (MFbp16), which binds to the COOH-terminal fragment, inhibited the binding of protein S to C4bp. The chymotryptic digest of the reduced and carboxymethylated COOH-terminal fragment was subjected to MFbp16-Sepharose 4B column affinity chromatography, and a peptide of Mr 2,500 was obtained. Protein S bound to the Mr 2,500 peptide, and this binding was inhibited by C4bp in a dose-dependent manner. The sequence of this peptide corresponded to Ser447-Tyr467 near the COOH terminus of the C4bp subunit. MFbp16, which bound to Mr 570,000 C4bp (C4bp-high), did not bind to Mr 510,000 C4bp (C4bp-low) in human plasma that does not form a complex with protein S. This suggests that C4bp-low lacks the protein S-binding site present in the COOH-terminal region of C4bp-high. Since C4bp-low also dissociates into identical subunits when reduced, the interchain disulfide bond region that links the seven subunits of C4bp appears to be closer to the NH2-terminal end than the protein S-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号