首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolates of Pyrenochaeta terrestris from South Africa and the United States of America were evaluated for pathogenicity, isozyme polymorphism and cultural characteristics. Isozyme polymorphism indicated that the isolates of this pathogen, even from the same field, are highly variable. Based on variability in the enzymes: alcohol dehydrogenase, aldolase, malate dehydrogenase and sorbitol dehydrogenase, the isolates could be divided into five electrophoretic types. The virulence of isolates to onion breeding lines resistant, moderately resistant and susceptible to pink root was variable and differentiation depended on the isolate used in the evaluation. The isolates showed extensive variation in both the ability to form setose pycnidia in culture and in the cultural pigmentation.  相似文献   

2.
 Conidiomata of the white root rot fungus were produced in axenic culture under near-ultraviolet light radiation. Pieces of sterilized Japanese pear twigs were placed on 7-day-old oatmeal agar culture in plates. The plates were further incubated for 5 days and then illuminated by near-ultraviolet light. Synnemata developed on the twigs within 5 weeks in 19 of 20 isolates tested, and conidia were observed in 12 of the 19 isolates. The synnemata and conidia produced were morphologically identical to those of Dematophora necatrix. Received: October 29, 2001 / Accepted: March 11, 2002  相似文献   

3.
Reproduction by three isolates ofPhoma medicaginis growing on potato dextrose agar was studied. The formation of pycnidia was optimum at 30°C whereas the optimum for the formation of conidia was 20°C. Light consistently increased the numbers of pycnidia and conidia over those formed in darkness and more conidia were produced in light at 23°C than at 30°C. The effects of carbon and nitrogen sources on reproduction were studied using modified Richard's medium as the basal medium. Fourteen carbohydrates, 11 amino acids, 9 inorganic nitrogen sources and urea were evaluated by replacing the carbohydrate or nitrogen in Richard's medium with the test substance. Generally, the monosaccharides and disaccharides were about alike and superior to polysaccharides for the production of pycnidia. The carbon sources were about equally useful for production of conidia, but the polysaccharides were superior to the other two classes of carbon sources when the number of conidia/pycnidium was calculated. Generally, the formation of pycnidia and conidia was favored by nitrate more than by ammonium nitrogen sources. The average number of conidia/pycnidium was greatest, however, when the nitrogen source was NH4NO3. All amino acids tested appeared to be useful nitrogen sources for production of pycnidia but none were especially good for conidia production. L-isoleucine was superior to the other amino acids tested. Of three isolates used, Illinois 23 consistently produced more pycnidia and conidia that did isolates Minnesota 2 and Missouri 5. Usually the significant interactions between isolates and other treatments were due to a greater response by isolate Ill. 23. It was concluded that the reproduction ofP. medicaginis varies significantly with the isolates of the fungus, the environment, and nutrients as well as with interactions among these factors, and conclusions about the influence of a particular factor will depend on whether the formation of pycnidia, conidia or conidia/pycnidium is being studied.Paper No. 7425, Scientific Journal Series, Minnesota Agricultural Experiment Station.  相似文献   

4.
The frequency and incidence of Pyrenochaeta terrestris and symptom type on the roots of each internode of four maize hybrids of different maturity groups were studied 70 days after sowing. The fungus developed in the roots of all developed internodes (from the primary to the sixth or seventh internodes of all tested hybrids). The average frequency and incidence of P. terrestris in the roots of late and medium early maturity hybrids ranged from 29.5 to 55.2% and from 11.8 to 22.7%, respectively. The highest frequency of the fungus was at the 2nd root internode (93.3%), and its greatest incidence was detected in the mesocotyl of the medium early hybrid H‐1 (56.9%). Necrosis predominated in the roots of the medium early (i.e. medium late maturity hybrids, 44.5% and 44.3%, respectively), whereas reddish pink symptoms were recorded in the roots of the late hybrids (51% and 42.5%). Because the fungus always produces a distinctive red pigment on carnation leaf agar (CLA) in a light regime, these conditions can be recommended for the reliable identification of P. terrestris, even if pycnidia are not formed. These are the first reports of the successive distribution of the fungus in each maize root internode of different hybrids, as well as the use of CLA medium in the identification of the P. terrestris.  相似文献   

5.
Asparagus crown and root rot caused by Fusarium oxysporum f.sp. asparagi (Foa), F. proliferatum (Fp) and F. solani (Fs) result in early decline and loss of crop production. The role of several crop species on the survival of the Fusarium spp. was investigated. The root symptoms and plant weight of seven crop species were evaluated after inoculation with each of the three Fusarium spp. The number of colony‐forming units of the Fusarium spp. from root tissues was also determined. Garlic was shown to be a symptomatic host for Foa, Fp and Fs; Fs was also pathogenic to onion. Root colonization of garlic, onion, maize, wheat, potato and sunflower suggested that they are reservoirs of Foa, Fp and Fs from asparagus and demonstrated the importance of crop rotation on the development of this asparagus disease.  相似文献   

6.
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific.  相似文献   

7.
To identify Fusarium species associated with diseases of root and basal plate of onion, surveys were conducted in seven provinces of Turkey in 2007. Samplings were performed in 223 fields, and 332 isolates belonging to 7 Fusarium spp. were obtained. The isolates were identified as Foxysporum, Fsolani, Facuminatum, Fequiseti, Fproliferatum, Fredolens, and Fculmorum based on morphological and cultural characteristics. Also, species‐specific primers were used to confirm the identity of Fusarium species. Foxysporum was the most commonly isolated species, comprising 66.57% of the total Fusarium species. Fredolens was identified for the first time in onion‐growing areas of Turkey. Selected isolates of each species were evaluated for their aggressiveness on onion plant. Foxysporum, Fsolani, Facuminatum, Fproliferatum, and Fredolens were highly pathogenic, causing severe damping‐off on onion plants cv. Texas Early Grano. Inter‐simple sequence repeats (ISSR) markers revealed a high degree of intra‐ and interspecific polymorphisms among Fusarium spp.  相似文献   

8.
Growth and activities of peroxidases, chitinases and glucanases were studied in order to evaluate the response of calli and roots of pink root-susceptible Allium cepa cvs. Valcatorce and T-412 and resistant A. fistulosum cv. Nogiwa Negi, to sterile culture filtrates of Phoma terrestris. Untreated calli and roots of A. fistulosum exhibited higher activity of peroxidases and glucanases than that of Valcatorce and T-412. Enzyme activities and growth of roots and calli were not affected in filtrate-treated A. fistulosum. The growth of calli and roots of A. cepa cultivars decreased significantly after exposure to P. terrestris filtrates while the peroxidase and glucanase activities increased. Peroxidase and glucanase activities were also enhanced in roots of Valcatorce bulbs grown in P. terrestris-inoculated soil as compared to healthy control plants. We conclude that a high constitutive activity of glucanases and perhaps chitinases might account for the resistance of A. fistulosum. The differential reaction (with respect to root growth) of pink root-susceptible and resistant materials to culture filtrates indicates that this in vitro-system might be useful for the screening of onion breeding lines.  相似文献   

9.
Light and nutrition are the important factors in the production of pycnidia and conidia by cowpea isolates of the Phomopsis state of Diaporthe phaseolorum. The highest number of pycnidia and conidia were produced on plant tissue exposed to cool-white fluorescent light. In semisynthetic media more pycnidia were formed at high glucose concentrations, but they matured more slowly than those formed at lower glucose concentrations. Both the level of conidiation and the percentage of pycnidia that formed conidia were higher at lower glucose concentrations. The best artificial medium for inducing a high number of pycnidia containing abundant conidia was one that contained 0.4% glucose and 0.4% NaNO3. A number of carbon sources could replace glucose in this medium.  相似文献   

10.
Fusarium root rot (Fusarium spp.) is one of the most important seedling diseases of coneflower (Echinacea spp.) in Alberta greenhouses. Effects of microbial antagonists (Trichoderma spp.) and fungicides, including difenoconazole, fludioxonil, and a mixture of fludioxonil, metalaxyl and difenoconazole, on the management of this disease, were investigated in Alberta. Twenty Trichoderma isolates demonstrated antagonistic activity to Fusarium in agar plate bioassays, with inhibition rates ranging from 44 to 65%. Some Trichoderma isolates significantly ( p < 0.05) reduced disease incidence and severity on seedlings in greenhouse experiments. An in vitro bioassay indicated that difenoconazole and the mixture equally inhibited the growth of both Fusarium and Trichoderma, but, while fludioxonil strongly inhibited the growth of Fusarium, it had little effect on Trichoderma, according to the dose--response models developed ( p < 0.01, R2= 0.902-0.998). Two Trichoderma isolates, T1 and T13 were applied singly or in combination with a low rate of fludioxonil in greenhouse evaluations. The results suggested that fludioxonil and Trichoderma could be integrated into a disease management program for fusarium root rot in coneflower.  相似文献   

11.
Fungi were isolated from Meloidogyne spp. eggs and females on 102 field-collected root samples in China. Of the 235 fungi isolated (representing 18 genera and 26 species), the predominant fungi were Fusarium spp. (42.1% of the isolates collected), Fusarium oxysporum (13.2%), Paecilomyces lilacinus (12.8%), and Pochonia chlamydosporia (8.5%). The isolates were screened for their ability to parasitise Meloidogyne incognita eggs in 24-well tissue culture plates in two different tests. The percentage of eggs parasitised by the fungi, the numbers of unhatched eggs and alive and dead juveniles were counted at 4 and 7 days after inoculation. The most promising fungi included five Paecilomyces isolates, 10 Fusarium isolates, 10 Pochonia isolates and one Acremonium isolate in test 1 or test 2. Paecilomyces lilacinus YES-2 and P. chlamydosporia HDZ-9 selected from the in vitro tests were formulated in alginate pellets and evaluated for M. incognita control on tomato in a greenhouse by adding them into a soil with sand mixture at rates of 0.2, 0.4, 0.8 and 1.6% (w/w). P. lilacinus pellets at the highest rate (1.6%) reduced root galling by 66.7%. P. chlamydosporia pellets at the highest rate reduced the final nematode density by 90%. The results indicate that P. lilacinus and P. chlamydosporia as pellet formulation can effectively control root-knot nematodes.  相似文献   

12.
Abstract

Setophoma terrestris is a fungus that produces a disease named “pink root” in onion. It is a biotrophic organism that causes losses, decreasing the onion’s weight and diameter. It is difficult to have a pure culture because it is slow growth. In this study, it was improved a protocol to isolate the pathogen from infected roots, which were obtained from farms in Costa Rica. The principal isolate was characterised through microscopic and molecular tests and confirmed as S. terrestris. The Koch’s postulates also were confirmed. Additionally, it was evaluated the antagonism of Trichoderma virens, Trichoderma harzianum and Bacillus licheniformis in vitro dual culture assays. After 6 and 8?days, T. virens showed the greatest value of growth inhibition. For 12?days T. virens had the most important effect. The results are promissory for evaluation of these microorganisms as part of an integrated management program to reduce the use of agrochemicals in onion production.  相似文献   

13.
Abstract

A total of 106 Fusarium spp. were isolated from infected roots and soil samples of wheat and rice. Of the 106 isolates, 32 from wheat, and 74 from rice, were isolated. Six Fusarium spp. (F. oxysporum, F. moniliforme, F. poae, F. graminearum, F. tricinctum and F. equiseti) were identified at specie level. In aggressiveness tests Fusarium spp. root rot causing fungi were screened out into different aggressiveness classes according to disease severity scales. The aggressiveness of Fusarium spp. was studied on wheat varieties (Inqalab-91 and chakwal-86) and on rice varieties (Basmati-385 and IRRI-6) under controlled conditions. The overall total number of aggressive isolates was higher in rice than in wheat. However, the percentage of severely aggressive isolates was high in wheat, whereas the percentage of moderately and slightly aggressiveness isolates was high in rice. In rice, five isolates were non-aggressive and on wheat 17 were non-aggressive. Random Amplified Polymorphism DNAs (RAPDs) were used to study the polymorphism and genetic variations within the population of Fusarium spp. that established to study correlation between taxonomical and genetical characters of fungi. Five random primers were used P1 (5′-AGGAGGACCC-3′), P2 (5′-ACGAGGGACT-3′), PE7 (5′-AGATGCAGCC-3′), P14 (5′-CCACAGCACG-3′) and PE20 (5′-AACGGTGACC-3′). Each of the 10-mer primers produced results based on the respective banding patterns they generated in present investigations. Primers distinguished the F. oxysporum, F. moniliforme, F. graminearum, F. tricinctum, F. poa and F. equiseti. All the tested primers yielded amplification products, and that were reproducible. Although there was some intraspecific variation with primers, some strains were similar and some were different in banding pattern. In F. oxysporum, F. moniliforme, F. graminearum, F. tricinctum, F. poa and F. equiseti were seen clustered close to one another but each primer separated them unambiguously. All primer (P1, P2, P14, PE7 and PE20) combination produced 62 bands. All primers have shown interspecific and intraspecific variations in banding patterns.  相似文献   

14.
A stem canker disease was observed on the phoenix trees located in the region of Dezhou, Shandong province. Symptomatic stems were collected and evaluated for the possible casual agent of the disease. A fungus resembling Fusarium sp. was consistently isolated from pieces of symptomatic tissues. The fungus formed abundant aerial mycelium on potato dextrose agar and produced the micro‐ and macro‐conidia on carnation leaf agar. The nucleotide sequences of the internal transcribed spacer of the rDNA from three representative isolates showed 100% identical to those of Fusarium oxysporum isolates deposited in the GenBank database. On the basis of morphological characteristics, pathogenicity test and molecular identification, the causal agent was identified as F. oxysporum. To our knowledge, this is the first report of stem canker on phoenix tree caused by F. oxysporum in China.  相似文献   

15.
Although Phomopsis longicolla is primarily known as a seedborne pathogen, it can be isolated from all parts of the plant. The disease lesions observed on the basal parts of soybean stems were slightly sunken with irregular shapes and sizes, bordered by a thin black margin. Within the lesions themselves, large and diffusely distributed pycnidia with α and β conidia, typical of the genus Phomopsis, were observed. The percentages of the two types of conidia varied considerably, but β conidia were predominant in most of the pycnidia. The presence of these reproductive organs indicated that the symptoms could have been caused by Phomopsis sojae. However, after isolation on a nutritive medium, all cultural and morphological characteristics clearly indicated that the isolated fungus was P. longicolla, whose identification was subsequently confirmed by sequencing three genomic regions. Monosporic isolates, with different ratios of α and β conidia, exhibited a high level of pathogenicity on soybean, after artificial inoculation. Both types of conidia were observed on the stems of the inoculated soybean plants. Beta conidia also formed quickly on medium made of soybean seeds and mature stems after exposure to low temperatures (?10°C). This study suggests that P. longicolla is capable of a massive production of β conidia, not only in old fungal cultures as it had until now been believed, but also in infected soybean plants in the field.  相似文献   

16.
Abstract

Root rot disease is very common in the bean, soybean, faba bean and pea plants growing areas in Samsun province. Disease incidence and severity were detected the highest at 93.8% and 55.4% in the bean growing area, and the lowest at 64.0% and 24.3% in the faba bean growing area respectively. In this study, a total of 2714 fungal isolates were obtained from some legume plants and soil samples. The most common fungi isolated from root and soil samples were Fusarium spp., multinucleate Rhizoctonia (MNR), binucleate Rhizoctonia (BNR) and Pythium spp. respectively. Fusarium spp. were isolated at high rates from all the examined areas. MN Rhizoctonia and BN Rhizoctonia were isolated both from inner and coastal areas of the province, whereas Pythium spp. were isolated in costal areas, except for the Vezirköprü district which is situated in the inner area. When looking at the interactions among pathogens causing root rot, it was found the great majority of the samples (30.4%) isolated both Fusarium spp. and MNR-BNR group fungi, whereas Fusarium spp. and Pythium spp. were isolated together from 10.9% of the samples and MNR-BNR and Pythium spp. from only 1.5% of the samples.  相似文献   

17.
Aims: To assess the ability of fungi isolated from grapes to produce patulin and citrinin. Methods and Results: A total of 446 Aspergillus isolates belonging to 20 species and 101 Penicillium isolates were inoculated in Czapek yeast extract agar and yeast extract sucrose agar and incubated for 7 days at 25°C. Extracts were analysed for patulin and citrinin by thin‐layer chromatography. None of the isolates of Aspergillus spp. produced either patulin or citrinin. Patulin was produced by three isolates of Penicillium expansum and two of Penicillium griseofulvum. Citrinin was produced by five isolates of P. expansum, two of Penicillium citrinum and one of Penicillium verrucosum. Conclusions: Our results show that the Aspergillus and Penicillium species commonly isolated from grapes are not a source of the mycotoxins, patulin and citrinin. Significance and Impact of the Study: The possibility of co‐occurrence of patulin and citrinin with ochratoxin A in grapes and grape products remain low, owing to the low frequency of isolation of potentially producing species.  相似文献   

18.
One of the economically important diseases of onion is the basal rot caused by various Fusarium species. Identification of the pathogenic species prevalent in a region is indispensable for designing management strategies, especially to develop resistant cultivars. Eighty Fusarium isolates are obtained from red onion bulbs on infected fields of East Azarbaijan province. Inoculating the onion bulbs with 38 selective isolates indicated that 17 isolates were pathogenic on onion. According to the morphological and molecular characteristics, these isolates were identified as F. oxysporum, F. solani, F. proliferatum and F. redolens. This is the first report of F. redolens on onion in Iran. On the other hand, the virulence of each pathogenic isolate was evaluated on onion bulbs and seedlings. F. oxysporum which causes severe rot and damping-off was considered as a highly virulent species in both conditions. While, F. proliferatum was considered as the most destructive on onion bulbs. Rot ability of F. solani was not considerable, and only the 4S isolate caused pre- and post-emergence damping-off more than 50%. Finally, F. redolens with less pathogenicity on onion bulbs was identified as the most virulent isolate on onion seedlings, which was explanatory of its importance on farm.  相似文献   

19.
Fusarium species involved in the Fusarium head blight complex in Western Europe were investigated for their potential to infect and colonize non-damaged wheat leaves and to produce conidia on senescing wheat leaves incubated at high relative humidity. Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium poae and Fusarium tricinctum did not directly penetrate the leaf tissue after conidia germination on the leaf surface. Germ tubes grew on the host surface for 24–36 hr forming a mycelial network. After invading the host, some species formed runner hyphae between cell wall layers or underneath the cuticular layer. Macroscopic symptoms developed on leaves and stems from 7 d post inoculation. Inside leaf tissues, hyphae thickened in diameter and were both inter- and intra-cellular. Fusarium tricinctum formed sporophores which erupted through the leaf surface releasing numerous conidia. Incubation of senescing leaves at 100 % relative humidity for 48 hr resulted in sporulation of all Fusarium spp.  相似文献   

20.
Chili pepper is one of the main crops of economic importance in Mexico, and Fusarium wilting is a disease that limits its production. In addition, the inappropriate use of agrochemicals in farming activities generate environmental and health problems. Therefore, in this study the effectiveness of Streptomyces sp PRIO41 was evaluated as a (1) biocontrol agent of Fusarium spp and (2) plant growth promoter bacteria. Assays of pathogenicity and virulence of Fusarium spp. in jalapeño pepper seeds, and interactions of these pathogens with Streptomyces PRIO41 were evaluated under two nutritional conditions. In the greenhouse, the effectiveness of Streptomyces sp. PRIO41 was determined as a (1) biocontrol of Fusarium, and (2) plant growth promoter of wilt of pepper plants. The results showed that all fungal isolates caused symptoms in pepper seeds and seedlings with different degrees of virulence. Interactions in vitro showed that Streptomyces showed the most effective range of virulence against Fusarium isolates in the poor medium (37.6%-100%), with fungicidal effects in some cases. In the greenhouse, Streptomyces PRIO41 reduced Fusarium wilting up to a 40%, and positively affected all vegetative growth parameters, particularly plant height, leaf area, root length, and leaf and root dry biomasses. This study showed the potential of Streptomyces PRIO41 as a biocontrol agent of Fusarium spp., and as a biofertilizer of pepper plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号