首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent studies have shown that harbor seals (Phoca vitulina) have an increased skeletal muscle mitochondrial volume density that may be an adaptation for maintaining aerobic metabolism during diving. However, these studies were based on single samples taken from locomotory muscles. In this study, we took multiple samples from a transverse section of the epaxial (primary locomotory) muscles and single samples from the m. pectoralis (secondary locomotory) muscle of five wild harbor seals. Average mitochondrial volume density of the epaxial muscles was 5.6%, which was 36.6% higher than predicted for a terrestrial mammal of similar mass, and most (82.1%) of the mitochondria were interfibrillar, unlike athletic terrestrial mammals. In the epaxial muscles, the total mitochondrial volume density was significantly greater in samples collected from the deep (6.0%) compared with superficial (5.0%) regions. Volume density of mitochondria in the pectoralis muscle was similar (5.2%) to that of the epaxial muscles. Taken together, these adaptations reduce the intracellular distance between mitochondria and oxymyoglobin and increase the mitochondrial diffusion surface area. This, in combination with elevated myoglobin concentrations, potentially increases the rate of oxygen diffusion into mitochondria and prevents diffusion limitation so that aerobic metabolism can be maintained under low oxygen partial pressure that develops during diving.  相似文献   

2.
Accumulation of triacylglycerol (TAG) and lipid intermediates in skeletal muscle plays an important role in the etiology of insulin resistance and type 2 diabetes mellitus. Disturbances in skeletal muscle lipid turnover and lipolysis may contribute significantly to this. So far, knowledge on the regulation of muscle lipolysis is limited. Recently the identification of a new lipase was reported: adipose triglyceride lipase (ATGL). ATGL deficient animals show significant lipid accumulation in skeletal muscle, which may indicate that ATGL plays a pivotal role in skeletal muscle lipolysis. However, until now, it is still unknown whether ATGL protein is expressed in human skeletal muscle. Therefore, the aim of the present study was to investigate whether ATGL is expressed at the protein level in human skeletal muscle, and to examine whether its expression is fiber-type specific. To accomplish this, we established an imunohistochemical and immunofluorescent staining procedure to study ATGL protein expression in relation to fiber type in human vastus lateralis muscle of eight male subjects (BMI range: 21.0–34.5 kg/m2 and age: 38–59 years). In the present paper we report for the first time that ATGL protein is indeed expressed in human skeletal muscle. Moreover, ATGL is exclusively expressed in type I (oxidative) muscle fibers, suggesting a pivotal role for ATGL in intramuscular fatty acid handling, lipid storage and breakdown.  相似文献   

3.
目的:探讨不同烟熏暴露强度对大鼠外周骨骼肌线粒体功能的影响。方法:将SD大鼠随机分成4个组,分别接受正常空气或3个周期烟熏暴露(分别是4周、8周、12周)。采用western blot检测大鼠外周骨骼肌与线粒体生成有关的过氧化物酶体增殖物激活受体γ共激活因子1(PGC-1α)以及涉及氧化磷酸化的细胞色素c氧化酶(COX)4的蛋白表达,RT-PCR检测与线粒体氧化代谢有关的Sdhb、线粒体转录因子A(TFAM)的基因表达以及比色法检测琥珀酸脱氢酶(SDH)活性,电镜检测线粒体形态结构的改变。结果:香烟烟雾暴露能够下调大鼠伸趾长肌(EDL)PGC-1α和COX4的蛋白表达,PGC-1α的表达下调呈明显的暴露强度依赖性。香烟烟雾暴露能够诱发大鼠比目鱼肌Sdhb、TFAM基因水平的下调,降低大鼠比目鱼肌SDH活性并呈明显的暴露强度依赖性。电镜显示香烟烟雾暴露诱发伸趾长肌线粒体发生空泡样变性。结论:香烟烟雾暴露诱发大鼠骨骼肌线粒体功能障碍,但该作用与骨骼肌的纤维类型组成无明显相关性。  相似文献   

4.
Voltage-dependent K+ channels (Kv) are involved in myocyte proliferation and differentiation by triggering changes in membrane potential and regulating cell volume. Since Kv7 channels may participate in these events, the purpose of this study was to investigate whether skeletal muscle Kv7.1 and Kv7.5 were involved during proliferation and myogenesis. Here we report that, while myotube formation did not regulate Kv7 channels, Kv7.5 was up-regulated during cell cycle progression. Although, Kv7.1 mRNA also increased during the G1-phase, pharmacological evidence mainly involves Kv7.5 in myoblast growth. Our results indicate that the cell cycle-dependent expression of Kv7.5 is involved in skeletal muscle cell proliferation.  相似文献   

5.
Twenty-four women completed a 20-week heavy-resistance weight training program for the lower extremity. Workouts were twice a week and consisted of warm-up exercises followed by three sets each of full squats, vertical leg presses, leg extensions, and leg curls. All exercises were performed to failure using 6-8 RM (repetition maximum). Weight training caused a significant increase in maximal isotonic strength (1 RM) for each exercise. After training, there was a decrease in body fat percentage (p less than 0.05), and an increase in lean body mass (p less than 0.05) with no overall change in thigh girth. Biopsies were obtained before and after training from the superficial portion of the vastus lateralis muscle. Sections were prepared for histological and histochemical examination. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished following routine myofibrillar adenosine triphosphatase histochemistry. Areas were determined for fiber types I, IIA, and IIAB + IIB. The heavy-resistance training resulted in significant hypertrophy of all three groups: I (15%), IIA (45%), and IIAB + IIB (57%). These data are similar to those in men and suggest considerable hypertrophy of all major fiber types is also possible in women if exercise intensity and duration are sufficient. In addition, the training resulted in a significant decrease in the percentage of IIB with a concomitant increase in IIA fibers, suggesting that strength training may lead to fiber conversions.  相似文献   

6.
7.
Summary Ultrastructural diversification of muscle fibers, with regard particularly to myofibrillar changes, has been investigated in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus muscles of the rat during fetal and postnatal development in the presence and in the absence of motor innervation. The band pattern and the shape of the myofibrils were uniform in fetal and neonatal muscle fibers and underwent differential changes during the first weeks after birth, concomitantly with fiber type specialization. The most evident variations in myofibrillar structure arising in this period concern the thickness of the Z band and the arrangement of the myofibrils. Myofibril formation was at first not impaired by denervation of rat muscles performed in utero and, although focal disintegration of myofibrils and detachment and loss of orientation of filaments became apparent by one week, atrophic muscle fibers with well-organized myofibrils could be seen as late as 2 months after birth. However, denervated muscle fibers of EDL and soleus did not display any significant and consistent difference in myofibrillar band pattern and shape. No variation in mitochondrial content and sarcoplasmic reticulum development was likewise seen in muscle fibers of EDL and soleus after fetal denervation. The findings emphasize the importance of neuromuscular interactions in muscle differentiation.This investigation was supported in part by a grant from Muscular Dystrophy Associations of America, Inc. to Prof. M. Aloisi. A preliminary report of part of this work was presented at the XL Congress of the Italian Zoological Society, Garda, 1971 (Schiaffino, 1972).  相似文献   

8.
The most important function of mitochondria is the production of energy in the form of ATP. The socio-economic impact of human diseases that affect skeletal muscle mitochondrial function is growing, and improving their clinical management critically depends on the development of non-invasive assays to assess mitochondrial function and monitor the effects of interventions. 31P magnetic resonance spectroscopy provides two approaches that have been used to assess in vivo ATP synthesis in skeletal muscle: measuring Pi  ATP exchange flux using saturation transfer in resting muscle, and measuring phosphocreatine recovery kinetics after exercise. However, Pi  ATP exchange does not represent net mitochondrial ATP synthesis flux and has no simple relationship with mitochondrial function. Post-exercise phosphocreatine recovery kinetics, on the other hand, yield reliable measures of muscle mitochondrial capacity in vivo, whose ability to define the site of functional defects is enhanced by combination with other non-invasive techniques.  相似文献   

9.
10.
本文对玉米花粉肌动蛋白和兔骨骼肌肌动蛋白进行了比较研究。玉米花粉肌动蛋白与兔骨骼肌肌动蛋白具有相同的分子量(42KD)。玉米花粉肌动蛋白可与兔抗鸡胃肌动蛋白抗血清产生免疫沉淀反应。玉米花粉肌动蛋白与兔骨骼肌肌动蛋白的氨基酸组成以及胰蛋白酶水解所得到的肽谱都相似。它们的羧基未端氨基酸顺序完全一致,其顺序都是Lys.Cys.Phe(COOH)。它们的圆二色谱基本相同,由圆二色谱计算得到的二级结构数据也相近。以上的结果表明了玉米花粉肌动蛋白与兔骨骼肌肌动蛋白的相似性。  相似文献   

11.
The effects of repeated biopsy sampling on muscle morphology was qualitatively and quantitatively assessed in strength-trained and untrained men and women. College-age men (13) and women (8) resistance trained twice a week for 8 weeks. A progressive resistance-training program was performed consisting of squats, leg presses, and leg extensions. Nontraining men (7) and women (5) served as controls. Muscle biopsy specimens and fasting bloods were obtained at the beginning and every 2 weeks and histochemical, biochemical, and ultrastructural methods were employed to assess the type and amount of damage. Except for a few scattered atrophic fibers in 2 of the 33 biopsy samples, all initial specimens were normal. In contrast, many of the subsequent biopsy samples from both untrained and resistance-trained men and women contained evidence of damage. Ultrastructural analysis confirmed that degenerative-regenerative processes were occurring in both groups. However, training subjects had a four-fold greater number of damaged fibers than nontraining subjects (8.53% vs 2.08%). In addition, only biopsy samples from training individuals contained fibers with internal disorganization (e.g., Z-line streaming, myofibrillar disruption). Calpain II levels in the biopsy samples and serum creatine kinase activity were not significantly affected supporting the light and electron microscopic observations that most of the damaged fibers were normal in appearance except for their small diameter. In summary, focal damage induced by the biopsy procedure is not completely repaired after 2 weeks and could affect the results, particularly cross-sectional area measurements. Moreover, resistance training appears to cause additional damage to the muscle and may delay repair of the biopsied region.  相似文献   

12.
Abstract

Metabolic stresses associated with disease, ageing, and exercise increase the levels of reactive oxygen species (ROS) in skeletal muscle. These ROS have been linked mechanistically to adaptations in skeletal muscle that can be favourable (i.e. in response to exercise) or detrimental (i.e. in response to disease). The magnitude, duration (acute versus chronic), and cellular origin of the ROS are important underlying factors in determining the metabolic perturbations associated with the ROS produced in skeletal muscle. In particular, insulin resistance has been linked to excess ROS production in skeletal muscle mitochondria. A chronic excess of mitochondrial ROS can impair normal insulin signalling pathways and glucose disposal in skeletal muscle. In contrast, ROS produced in skeletal muscle in response to exercise has been linked to beneficial metabolic adaptations including mitochondrial biogenesis and muscle hypertrophy. Moreover, unlike insulin resistance, exercise-induced ROS appears to be primarily of non-mitochondrial origin. The present review summarizes the diverse ROS-targeted metabolic outcomes associated with insulin resistance versus exercise in skeletal muscle, thus, presenting two contrasting perspectives of pathologically harmful versus physiologically beneficial ROS. Here, we discuss the key sites of ROS production during exercise and the effect of ROS in skeletal muscle of people with type 2 diabetes.  相似文献   

13.
摘要 目的:研究妊娠期母体甲状腺功能减退对胎鼠骨骼肌胰岛素抵抗和线粒体功能的影响。方法:构建妊娠期母体甲状腺功能减退小鼠模型,制备胎鼠骨骼肌线粒体,同时选取健康正常胎鼠做本次实验的对照组。采用酶联免疫吸附法和放射免疫分析法测定两组小鼠甲状腺功能;通过全自动生化分析仪检测两组胎鼠胰岛素抵抗结果;利用Clark氧电极测定密闭反应体系评价两组胎鼠线粒体功能结果,并分析母体甲状腺功能减退与胎鼠骨骼肌胰岛素抵抗和线粒体功能的相关性。结果:两组小鼠甲状腺功能结果、两组胎鼠骨骼肌胰岛素抵抗和线粒体结果对比分析之间均有显著差异(P<0.05)。甲减组小鼠血清中促甲状腺激素(Thyroid Stimulating Hormone,TSH)、丙氨酸转氨酶(alanine aminotransferase,ALT)和门冬氨酸氨基转移酶(aspartate aminotransferase,AST)均较对照组低,胎鼠的空腹血糖(fasting blood-glucose,FBG)、动态3(state3,ST3)、动态4(state4,ST4)呼吸速率和呼吸控制比(respiratory control,RCR)也均较对照组低;而甲减组小鼠游离甲状腺素(free thyroxine,FT4)却较对照组高,胎鼠的胰岛素(insulin,INS)和胰岛素抵抗结果(homeostasis model assessment of insulin resistance,HOMA-IR)也较对照组高(P<0.05)。且母体甲状腺功能减退指标中FT4和RCR、ALT和FBG以及RCR之间有负相关关系,母体甲状腺功能减退的其他指标则与胎鼠骨骼肌胰岛素抵抗和线粒体功能的其他相关指标之间呈正相关关系(P<0.05)。结论:妊娠期母体甲状腺功能减退会降低胎鼠骨骼肌胰岛素抵抗和线粒体功能,影响胎鼠的正常发育。  相似文献   

14.
Summary Ultrastructural and stereological assessment of the mature avian anterior latissimus dorsi (ALD) muscle showed that it contains two kinds of extrafusal fibers. This fine structural dichotomy of fiber types in the ALD correlated well with their previously reported histochemical duality. Distinct differences occur in sarcomere banding, myofibrillar area, sarcotubular and mitochondrial density, and in morphology of motor-nerve terminals. Both myofiber types in this muscle were interpreted as representing varieties of slow or tonic muscle fibers.Both fibers contain myofibrils that, despite differences in cross-sectional area, were large, irregular, and ribbon-shaped, typical of the Felderstruktur appearance of true slow fibers. Whereas the majority of fibers (type-1) are devoid of well-defined M-bands, the minor fiber population (type-2) exhibit prominent M-bands in the center of each sarcomere. In addition, type-1 tonic fibers contain a significantly lower mitochondrial and sarcotubular volume than the tonic fibers of type-2. While both fiber types exhibit motor-nerve terminals that are small, smooth and punctate in appearance, those on the type2 fibers often had a number of shallow postjunctional folds. Whether or not these two classes of extrafusal fiber in this muscle represent two separate and distinct types of motor units remains to be determined functionally.Supported by grants from the Medical Research Council and the Muscular Dystrophy Association of Canada. The author gratefully acknowledges the excellent technical assistance of Susan L. Shinn  相似文献   

15.
It is widely known that the contractile system of muscle takes on either the state of contraction (force-generating) or the state of relaxation (non-force-generating), which is known as the "all-or-nothing" principle. However, it is important to note that under intermediate activation conditions there exists a third state, which demonstrates auto-oscillatory properties and is termed SPOC (SPontaneous Oscillatory Contraction) state. We present a phase diagram, in which the states of the contractile system of muscle are divided into three regions consisting of contraction, relaxation and SPOC states. In the present review, experimental data related to the characteristics of SPOC are summarized and the mechanism of SPOC is described. We propose that the bio-motile system itself is an auto-oscillator, even in a membrane-less supra-molecular structure composed of an assembly of molecular motors and cytoskeletons (actin filaments and microtubules). Finally, the physiological significance of SPOC is discussed.  相似文献   

16.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O2 consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

17.
Summary FITC-labelled antibodies against native actin from chicken gizzard smooth muscle (Gröschel-Stewart et al., 1976) have been used to stain cultures of guinea-pig vas deferens and taenia coli, rabbit thoracic aorta, rat ventricle and chick skeletal muscle. The I-band of myofibrils of cardiac muscle cells and skeletal muscle myotubes stains intensely. In isolated smooth muscle cells, the staining is located exclusively on long, straight, non-interrupted fibrils which almost fill the cell. Smooth muscle cells which have undergone morphological dedifferentiation to resemble fibroblasts with both phase-contrast microscopy and electronmicroscopy still stain intensely with the actin antibody. In those muscle cultures which contain some fibroblasts or endothelial cells, the non-muscle cells are not stained with the actin antibody even when the reactions are carried out at 37° C for 1 h or after glycerination. Prefusion skeletal muscle myoblasts also do not stain with this antibody.It is concluded that the actin antibody described in this report is directed against a particular sequence of amino acids in muscle actin which is not homologous with non-muscle actin. The usefulness of this antibody in determining the origin of cells in certain pathological conditions such as atherosclerosis is discussed.This work was supported by the Life Insurance Medical Research Fund of Australia and New Zealand, the National Heart Foundation of Australia, the Deutsche Forschungsgemeinschaft and the Wellcome Trust (London). We thank Janet D. McConnell for excellent technical assistance  相似文献   

18.
Mitochondrial uncoupling in skeletal muscle has raised a major interest as a therapeutic target for treatment of obesity, insulin sensitivity, and age-related disease. These physiological effects could be demonstrated in several mouse models ectopically expressing uncoupling protein 1 (UCP1). Here, we investigated whether UCP1 expressed under the control of the human skeletal actin (HSA) promoter in mouse skeletal muscle can be regulated, and whether it affects mitochondrial superoxide production. We show that the skeletal muscle UCP1 can be fully inhibited by a purine nucleotide (GDP) and reactivated by fatty acids (palmitate). During mitochondrial resting state (State 4), mitochondrial superoxide production is about 76% lower in transgenic mice. We suggest that this reduction is due to uncoupling activity as the administration of GDP restores superoxide production to wildtype levels. Our study confirms native behaviour of UCP1 in skeletal muscle and demonstrates beneficial effects on prevention of mitochondrial reactive oxygen species production which may reduce age-related deleterious processes.  相似文献   

19.
《Free radical research》2013,47(5):385-391
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

20.
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号