首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explored mechanisms involved in B cell self-tolerance in a double- and triple-transgenic mouse model bearing the LamH-C mu Ig H chain conventional transgene and a gene-targeted replacement for a functional V kappa 8J kappa 5 L chain gene. Whereas the H chain is known to generate anti-laminin Ig in combination with multiple L chains, the H + L Ig binds ssDNA in addition to laminin. Immune phenotyping indicates that H + L transgenic B cells are regulated by clonal deletion, receptor editing via secondary rearrangements at the nontargeted kappa allele, and anergy. Collectively, the data suggest that multiple receptor-tolerogen interactions regulate autoreactive cells in the H + L double-transgenic mice. Generation of H + LL triple-transgenic mice homozygous for the targeted L chain to exclude secondary kappa rearrangements resulted in profound B cell depletion with absence of mature B cells in the bone marrow. We propose that the primary tolerogen of dual reactive B cells in this model is not ssDNA, but a strongly cross-linking tolerogen, presumably basement membrane laminin, that triggers recombination-activating gene activity, L chain editing, and deletion.  相似文献   

2.
The primary cultures of canine lens epithelial cells were transiently transfected with cDNAs for dog ferritin H- or L-chains in order to study differential expression of these chains. By using chain-specific antibodies, we determined that at 48 h after transfection overexpression of L-chain was much higher (9-fold over control) than that of H-chain (1.7-fold). We discovered that differentially transfected cells secrete overexpressed chains as homopolymeric ferritin into the media. Forty-eight hours after transfection accumulation of H-ferritin in the media was much higher (3-fold) than that of L-ferritin. This resulted in lowering of the concentration of H-chain in the cytosol. Co-transfection of cells with both H- and L-chain cDNAs increased the intracellular levels of H-chain and eliminated secretion of H-ferritin to the media. We concluded that lens epithelial cells differentially regulate concentration of both ferritin chains in the cytosol. The overexpressed L-chain accumulated in the cytosol as predominantly homopolymeric L-ferritin. This is in contrast to H-chain, which is removed to the media unless there is an L-chain available to form heteropolymeric ferritin. These data indicate that the inability of cells to more strictly control cytosolic levels of L-chain may augment its accumulation in lenses of humans with hereditary hyperferritinemia cataract syndrome, which is caused by overexpression of L-chain due to mutation in the regulatory element in the untranslated region of the mRNA of the chain.  相似文献   

3.
In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional.  相似文献   

4.
The etiology of multiple sclerosis (MS) is believed to involve environmental factors, but their identity and mode of action are unknown. In this study, we demonstrate that Ab specific for the extracellular Ig-like domain of myelin oligodendrocyte glycoprotein (MOG) cross-reacts with a homologous N-terminal domain of the bovine milk protein butyrophilin (BTN). Analysis of paired samples of MS sera and cerebrospinal fluid (CSF) identified a BTN-specific Ab response in the CNS that differed in its epitope specificity from that in the periphery. This effect was statistically significant for the Ab response to BTN(76-100) (p = 0.0026), which cosequestered in the CSF compartment with Ab to the homologous MOG peptide MOG(76-100) in 34% of MS patients (n = 35). These observations suggested that intratheccal synthesis of Ab recognizing BTN peptide epitopes in the CNS was sustained by molecular mimicry with MOG. Formal evidence of molecular mimicry between the two proteins was obtained by analyzing MOG-specific autoantibodies immunopurified from MS sera. The MOG-specific Ab repertoire cross-reacts with multiple BTN peptide epitopes including a MOG/BTN(76-100)-specific component that occurred at a higher frequency in MS patients than in seropositive healthy controls, as well as responses to epitopes within MOG/BTN(1-39) that occur at similar frequencies in both groups. The demonstration of molecular mimicry between MOG and BTN, along with sequestration of BTN-reactive Ab in CSF suggests that exposure to this common dietary Ag may influence the composition and function of the MOG-specific autoimmune repertoire during the course of MS.  相似文献   

5.
Autoantibody responses against conformational epitopes of myelin/oligodendrocyte glycoprotein (MOG) possess myelin destructive potential, as demonstrated in the marmoset model of human multiple sclerosis (MS) and in some rodent models of experimental allergic encephalomyelitis. We have previously characterized monoclonal Fab fragments specific for conformational epitopes of MOG that were derived from a combinatorial antibody library generated from a MOG-immune marmoset. In this paper, we address the molecular heterogeneity of humoral responses against MOG in this outbred model of MS by studying additional antibody clones derived from a genetically unrelated animal. We find that all MOG-specific IgGkappa Fab fragments, unrelated to genetic make-up, utilize a restricted set of variable region genes, IGHV1 and IGHV3 for the H chain and IGKV1, IGKV3, and IGKV5 for the L chain. Despite these restricting factors, diversity within these antibody repertoires can be observed, predominantly within the H-chain CDR3 regions. Our findings suggest that only a limited set of Ig genes is necessary to launch a diverse, destructive humoral immune response against a single CNS antigen in primates. These results are the first to contribute to a better understanding of how myelin-directed and potentially destructive autoantibody responses may develop in human MS.  相似文献   

6.
The human myelin/oligodendrocyte glycoprotein (MOG) gene is encoded by 10 exons that exhibit a complex pattern of alternative splicing. This report demonstrates that several MOG-specific alternative splice variants are indeed expressed in human oligodendrocytes (OLs) and myelin during perinatal development and are retained through adulthood. While all forms possess the common extracellular Ig-like domain, these alternative MOG structures differ significantly in their respective cytoplasmic domains. Peptide-specific antibodies were generated to facilitate detection of these different MOG moieties. The fidelity of these antibodies is shown using N20 OLs expressing individual MOG variants. These antibodies also only co-localize with another well-characterized marker of OLs and myelin--PLP/DM20 proteins. Among the human tissue samples tested, very limited expression occurred by 36 weeks gestation for 2-3 MOG variants, and the remaining MOG isoforms were not evident until shortly after birth. This study represents the first evidence of alternative translation products from the MOG gene. To date, it is believed that alternative splicing of MOG is limited to primates. Recent completion of various genome projects has revealed that alternative splicing is much more prevalent than originally estimated, and species-specific alternative splicing is now being shown to be highly relevant to expanding proteomic diversity.  相似文献   

7.
Autoantibodies directed against conformation-dependent epitopes of the extracellular domain of the myelin oligodendrocyte glycoprotein (MOG(Igd)) play a major role in the immunopathogenesis of demyelination in experimental autoimmune encephalomyelitis. We now demonstrate that one or more genes encoded within the MHC selectively censor the ability of H-2(b) mice to mount this conformation-dependent autoantibody response, while leaving T and B cell responses to linear MOG(Igd) epitopes intact. This novel form of selective B cell unresponsiveness discriminates between pathogenic and nonpathogenic Ab responses to MOG and determines whether or not Ab-dependent effector mechanisms play an important role in the pathogenesis of MOG-induced experimental autoimmune encephalomyelitis in the mouse.  相似文献   

8.
Human ferritin, a multimeric iron storage protein, is composed by various proportions of two subunit types: the H- and L-chains. The biological functions of these two genic products have not been clarified, although differences in reactivity with iron have been shown. Starting from the hypothesis that the high stability typical of ferritin is an important property which may be relevant for its iron storage function, we studied ferritin homopolymers of H- and L-chains in different denaturing conditions. In addition we analyzed 13 H-chain variants with alterations in regions conserved within mammalian H-chains. In all the denaturation experiments H-chain ferritin showed lower stability than L-chain ferritin. The difference was greater in guanidine HCl denaturation experiments, where the end products are fully unfolded peptides, than in acidic denaturation experiments, where the end products are peptides with properties analogous to "molten globule." The study on H-chain variants showed: (i) ferritin stability was not affected by alterations of regions exposed to the inner or outer surface of the shell and not involved in intra- or inter-chain interactions; (ii) stability was reduced by alterations of sequences involved in inter-subunit interactions such as the deletion of the N-terminal extension or substitutions along the hydrophobic and hydrophilic channels; (iii) stability was increased by the substitution of 2 amino acids inside the four-helix bundle with those of the homologous L-chain. One of the residues is involved in a salt bridge in the L-chain, and we concluded that the stability difference between H- and L-ferritins is to a large extent due to the stabilizing effect of this salt bridge on the L-subunit fold.  相似文献   

9.
MHC variant peptides are analogues of immunogenic peptides involving alterations of the MHC-binding residues, thereby altering the affinity of the peptide for the MHC molecule. Recently, our laboratory demonstrated that immunization of WT B6 mice with 45D, a low-affinity MHC variant peptide of MOG(35-55), results in significantly attenuated experimental autoimmune encephalomyelitis (EAE), yet IFN-gamma production is comparable to myelin oligodendrocyte glycoprotein (MOG)(35-55)-immunized mice. In light of these findings, we asked whether IFN-gamma was required for the reduced encephalitogenicity of the weak ligand 45D in EAE. In this study, we report that immunization of mice deficient in IFN-gamma or its receptor with 45D exhibit significant EAE signs compared with 45D-immunized wild-type B6 mice. Moreover, 45D-immunized IFN-gamma(-/-) and IFN-gammaR(-/-) mice demonstrate MOG tetramer-positive CD4(+) T cells within the CNS and display substantial numbers of MOG-specific CD4(+) T cells in the periphery. In contrast, wild-type mice immunized with 45D exhibit reduced numbers of MOG-specific CD4(+) T cells in the periphery and lack MOG tetramer- positive CD4(+) T cells in the CNS. Importantly, the increased encephalitogenicity of 45D in mice lacking IFN-gamma or IFN-gammaR was not due to deviation toward an enhanced IL-17-secreting phenotype. These findings demonstrate that IFN-gamma significantly attenuates the encephalitogenicity of 45D and are the first to highlight the importance of IFN-gamma signaling in setting the threshold level of responsiveness of autoreactive CD4(+) T cells to weak ligands.  相似文献   

10.
Receptor editing in the bone marrow (BM) serves to modify the Ag receptor specificity of immature self-reactive B cells, while anergy functionally silences self-reactive clones. Here, we demonstrate that anergic B cells in hen egg lysozyme Ig (HEL-Ig)/soluble HEL double transgenic mice show evidence of having undergone receptor editing in vivo, as demonstrated by the presence of elevated levels of endogenous kappa light chain rearrangements in the BM and spleen. In an in vitro IL-7-driven BM culture system, HEL-Ig BM B cells grown in the presence of soluble HEL down-regulated surface IgM expression and also showed induction of new endogenous kappa light chain rearrangements. Using a panel of soluble protein ligands with reduced affinity for the HEL-Ig receptor, the editing response was shown to correlate in a dose-dependent fashion with the strength of signaling through the B cell receptor. The finding that the level of B cell receptor cross-linking sufficient to induce anergy in B cells is also capable of engaging the machinery required for receptor editing suggests an intimate relationship between these two mechanisms in maintaining B cell tolerance.  相似文献   

11.
Multiple sclerosis (MS) is a demyelinating inflammatory disease of the CNS. Though originally believed to be CD4-mediated, additional immune effector mechanisms, including myelin-specific CD8(+) T cells, are now proposed to participate in the pathophysiology of MS. To study the immunologic and encephalitogenic behavior of HLA-A*0201-binding myelin-derived epitopes in vivo, we used a humanized HLA-A*0201-transgenic mouse model. Eight HLA-A*0201-binding peptides derived from myelin oligodendrocyte glycoprotein (MOG), an immunodominant myelin self-Ag, were identified in silico. After establishing their relative affinity for HLA-A*0201 and their capacity to form stable complexes with HLA-A*0201 in vitro, their immunological characteristics were studied in HLA-A*0201-transgenic mice. Five MOG peptides, which bound stably to HLA-A*0201 exhibited strong immunogenicity by inducing a sizeable MOG-specific HLA-A*0201-restricted CD8(+) T cell response in vivo. Of these five candidate epitopes, four were processed by MOG-transfected RMA target cells and two peptides proved immunodominant in vivo in response to a plasmid-encoding native full-length MOG. One of the immunodominant MOG peptides (MOG(181)) generated a cytotoxic CD8(+) T cell response able to aggravate CD4(+)-mediated EAE. Therefore, this detailed in vivo characterization provides a hierarchy of candidate epitopes for MOG-specific CD8(+) T cell responses in HLA-A*0201 MS patients identifying the encephalitogenic MOG(181) epitope as a primary candidate.  相似文献   

12.
《Gene》1996,173(2):257-259
We have determined the nucleotide (nt) sequences encoding the heavy (H)- and light (L)-chains of the Fab fragment of a murine monoclonal antibody, MabA34 (γ,κ), which is specific for human plasma apolipoprotein A-I of high-density lipoproteins. The variable (V) regions of the H- and L-chains were revealed to be members of mouse H-chain subgroup II(A) and κ L-chain subgroup II, respectively. A few unusual amino acids in the V region of the H-chain, and nt residues probably introduced by somatic mutations from germline genes were also identified.  相似文献   

13.
We previously reported the protection from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) by the adoptive transfer of genetically modified embryonic stem cell-derived dendritic cells (ES-DC) presenting MOG peptide in the context of MHC class II molecules and simultaneously expressing TRAIL (ES-DC-TRAIL/MOG). In the present study, we found the severity of EAE induced by another myelin autoantigen, myelin basic protein, was also decreased after treatment with ES-DC-TRAIL/MOG. This preventive effect diminished, if the function of CD4(+)CD25(+) regulatory T cells (Treg) was abrogated by the injection of anti-CD25 mAb into mice before treatment with ES-DC-TRAIL/MOG. The adoptive transfer of CD4(+)CD25(+) T cells from ES-DC-TRAIL/MOG-treated mice protected the recipient mice from MOG- or myelin basic protein-induced EAE. The number of Foxp3(+) cells increased in the spinal cords of mice treated with ES-DC-TRAIL/MOG. In vitro experiments showed that TRAIL expressed in genetically modified ES-DC and also in LPS-stimulated splenic macrophages had a capacity to augment the proliferation of CD4(+)CD25(+) T cells. These results suggest that the prevention of EAE by treatment with ES-DC-TRAIL/MOG is mediated, at least in part, by MOG-reactive CD4(+)CD25(+) Treg propagated by ES-DC-TRAIL/MOG. For the treatment of organ-specific autoimmune diseases, induction of Treg reactive to the organ-specific autoantigens by the transfer of DC-presenting Ags and simultaneously overexpressing TRAIL therefore appears to be a promising strategy.  相似文献   

14.
Membrane-bound polysomes were prepared from the posterior silk gland of the silkworm, Bombyx mori, on the fourth to fifth day in the fifth larval instar. The polysomes, when supplemented with a soluble fraction from the posterior silk gland, exhibited the elongation reaction of the growing polypeptide-chains, but the initiation reaction of polypeptide synthesis was not demonstrated in this system. The predominant products synthesized on the membrane-bound polysomes were fibroin heavy chain (H-chain) and light chain (L-chain), while polypeptides of heterogeneous size classes were synthesized on the 105,000 X g-sedimentable polysomes. A substantial fraction of the fibroin L-chain synthesized was bound to the H-chain by disulfide bond. Most of the newly synthesized fibroin H- and L-chains on the membrane-bound polysomes were proved to be present within microsomal membrane vesicles because of their insensitivity to digestion with proteases in the absence of Triton X-100.  相似文献   

15.
A number of Ag-specific approaches have been developed that ameliorate experimental allergic encephalomyelitis (EAE), an animal model for the human autoimmune disease multiple sclerosis. Translation to humans, however, remains a consideration, justifying the search for more insight into the mechanism underlying restoration of self-tolerance. Ig-proteolipid protein (PLP) 1 and Ig-myelin oligodendrocyte glycoprotein (MOG) are Ig chimeras carrying the encephalitogenic PLP 139-151 and MOG 35-55 amino acid sequence, respectively. Ig-PLP1 ameliorates EAE in SJL/J (H-2(s)) mice while Ig-MOG modulates the disease in C57BL/6 (H-2(b)) animals. In this study, we asked whether the chimeras would suppress EAE in F(1) mice expressing both parental MHC alleles and representing a polymorphism with more relevance to human circumstances. The results show that Ig-MOG modulates both PLP1 and MOG peptide-induced EAE in the F(1) mice, whereas Ig-PLP1 counters PLP1 EAE but exacerbates MOG-induced disease. This in trans aggravation of MOG EAE by Ig-PLP1 operates through induction of PLP1-specific T cells producing IL-5 that sustained inhibition of MOG-specific Abs leading to exacerbation of EAE. Thus, in trans T cell tolerance, which should be operative in polymorphic systems, can aggravate rather than ameliorate autoimmunity. This phenomenon possibly takes place through interference with protective humoral immunity.  相似文献   

16.
In response to encounter with self-Ag, autoreactive B cells may undergo secondary L chain gene rearrangement (receptor editing) and change the specificity of their Ag receptor. Knowing at what differentiative stage(s) developing B cells undergo receptor editing is important for understanding how self-reactive B cells are regulated. In this study, in mice with Ig transgenes coding for anti-self (DNA) Ab, we report dsDNA breaks indicative of ongoing secondary L chain rearrangement not only in bone marrow cells with a pre-B/B cell phenotype but also in immature/transitional splenic B cells with little or no surface IgM (sIgM(-/low)). L chain-edited transgenic B cells were detectable in spleen but not bone marrow and were still found to produce Ab specific for DNA (and apoptotic cells), albeit with lower affinity for DNA than the unedited transgenic Ab. We conclude that L chain editing in anti-DNA-transgenic B cells is not only ongoing in bone marrow but also in spleen. Indeed, transfer of sIgM(-/low) anti-DNA splenic B cells into SCID mice resulted in the appearance of a L chain editor (Vlambdax) in the serum of engrafted recipients. Finally, we also report evidence for ongoing L chain editing in sIgM(low) transitional splenic B cells of wild-type mice.  相似文献   

17.
In the mouse, Bruton's tyrosine kinase (Btk) is essential for efficient developmental progression of CD43(+)CD2(-) large cycling into CD43(-)CD2(+) small resting pre-B cells in the bone marrow and of IgM(high) transitional type 2 B cells into IgM(low) mature B cells in the spleen. In this study, we show that the impaired induction of cell surface changes in Btk-deficient pre-B cells was still noticeable in kappa(+) immature B cells, but was largely corrected in lambda(+) immature B cells. As lambda gene rearrangements are programmed to follow kappa rearrangements and lambda expression is associated with receptor editing, we hypothesized that the transit time through the pre-B cell compartment or receptor editing may affect the extent of the cellular maturation defects in Btk-deficient B cells. To address this issue, we used 3-83 mu delta transgenic mice, which prematurely express a complete B cell receptor and therefore manifest accelerated B cell development. In Btk-deficient 3-83 mu delta mice, the IgM(+) B cells in the bone marrow exhibited a very immature phenotype (pre-BCR(+)CD43(+)CD2(-)) and were arrested at the transitional type 1 B cell stage upon arrival in the spleen. However, these cellular maturation defects were largely restored when Btk-deficient 3-83 mu delta B cells were on a centrally deleting background and therefore targeted for receptor editing. Providing an extended time window for developing B cells by enforced expression of the antiapoptotic gene Bcl-2 did not alter the Btk dependence of their cellular maturation. We conclude that premature B cell receptor expression amplifies the cellular maturation defects in Btk-deficient B cells, while extensive receptor editing reduces these defects.  相似文献   

18.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

19.
Experimental autoimmune encephalomyelitis (EAE) is caused by activation of myelin Ag-reactive CD4+ T cells. In the current study, we tested a strategy to prevent EAE by pretreatment of mice with genetically modified dendritic cells (DC) presenting myelin oligodendrocyte glycoprotein (MOG) peptide in the context of MHC class II molecules and simultaneously expressing TRAIL or Programmed Death-1 ligand (PD-L1). For genetic modification of DC, we used a recently established method to generate DC from mouse embryonic stem cells (ES cells) in vitro (ES-DC). ES cells were sequentially transfected with an expression vector for TRAIL or PD-L1 and an MHC class II-associated invariant chain-based MOG epitope-presenting vector. Subsequently, double-transfectant ES cell clones were induced to differentiate to ES-DC, which expressed the products of introduced genes. Treatment of mice with either of the double-transfectant ES-DC significantly reduced T cell response to MOG, cell infiltration into spinal cord, and the severity of MOG peptide-induced EAE. In contrast, treatment with ES-DC expressing MOG alone, irrelevant Ag (OVA) plus TRAIL, or OVA plus PD-L1, or coinjection with ES-DC expressing MOG plus ES-DC-expressing TRAIL or PD-L1 had no effect in reducing the disease severity. In contrast, immune response to irrelevant exogenous Ag (keyhole limpet hemocyanin) was not impaired by treatment with any of the genetically modified ES-DC. The double-transfectant ES-DC presenting Ag and simultaneously expressing immune-suppressive molecules may well prove to be an effective therapy for autoimmune diseases without inhibition of the immune response to irrelevant Ag.  相似文献   

20.
Previous studies have found that a 95% reduction in TCR expression does not adversely affect response to foreign Ags, indicating that T cells have an excess of TCR for Ag recognition. Because self-reactive T cells may have low affinity for peptide:MHC, we investigated whether myelin-reactive T cells require these excess TCR for optimal response. To test this concept, mAb were used to effectively reduce the TCR of Valpha3.2 and Vbeta11 TCR transgenic mice (referred to as 2D2). After masking the TCR with either continuous or prepulsed anti-Valpha3.2 Ab, 2D2 cells were immediately stimulated with myelin oligodendrocyte glycoprotein (MOG)(35-55). These cells have a dramatic Ab dose-dependent reduction in proliferation, with a small reduction in TCR expression leading to a 50% reduction in proliferation in vitro. Additionally, 2D2 cells, treated with anti-Valpha3.2 Ab and peptide for 7 days, were re-stimulated with MOG and continue to have a dose-dependent reduction in proliferation. TCR quantitation identified the same amount of TCR on the Ab/peptide treatment compared with the peptide-only control. These results point out that the combination of reduced TCR and peptide challenge leads to a phenotypic change resulting in T cell anergy. Importantly, adoptive transfer of these anergic T cells upon autoimmune disease induction had a marked reduction in disease severity compared with untreated MOG-specific CD4(+) T cells, which had significant autoimmune disease manifested by optic neuritis and death. Thus, reduction of TCR expression may provide a potential therapy for self-reactive T cells involved in autoimmune diseases through the induction of anergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号