首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured bovine adrenal chromaffin cells contain a pool of ATP sequestered within the chromaffin vesicles and an extravesicular pool of ATP. In a previous study it was shown that the turnover of ATP in the extravesicular pool was biphasic. One phase occurred with a t1/2 of 3.5-4.5 h whereas the second phase occurred with a t1/2 of several days. The studies described here were undertaken to characterize further the vesicular and extravesicular pools of ATP by examining the effects of metabolic inhibitors, adenosine, and digitonin on ATP utilization and subcellular localization immediately after and 48 h after labeling with [3H]adenosine and 32Pi. Immediately after labeling a combination of cyanide, 2-deoxy-D-glucose, the beta-glucono-1,5-lactone resulted in a 90-95% depletion of the labeled ATP but only a 25% depletion of the endogenous ATP within 30 min. Forty-eight hours after labeling, addition of the inhibitors resulted in a 70% depletion of the [3H]ATP but only a 25% depletion of the [32P]ATP and endogenous ATP. Addition of 10 microM adenosine to the media resulted in a similar loss of [3H]ATP in cells examined immediately after or 48 h after labeling. Adenosine increased the amounts of [32P]ATP when added immediately after labeling but had no effect on the [32P]ATP content when added 48 h after labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The adenine nucleotide stores of cultured adrenal medullary cells were radiolabeled by incubating the cells with 32Pi and [3H]adenosine and the turnover, subcellular distribution, and secretion of the nucleotides were examined. ATP represented 84-88% of the labeled adenine nucleotides, ADP 11-13%, and AMP 1-3%. The turnover of 32P-adenine nucleotides and 3H-nucleotides was biphasic and virtually identical; there was an initial fast phase with a t1/2 of 3.5-4.5 h and a slow phase with a half-life varying from 7 to 17 days, depending upon the particular cell preparation. The t1/2 of the slow phase for labeled adenine nucleotides was the same as that for the turnover of labeled catecholamines. The subcellular distribution of labeled adenine nucleotides provides evidence that there are at least two pools of adenine nucleotides which make up the component with the long half-life. One pool, which contains the bulk of endogenous nucleotides (75% of the total), is present within the chromaffin vesicles; the subcellular localization of the second pool has not been identified. The studies also show that [3H]ATP and [32P]ATP are distributed differently within the cell; 3 days after labeling 75% of the [32P]ATP was present in chromaffin vesicles while only 35% of the [3H]ATP was present in chromaffin vesicles. Evidence for two pools of ATP with long half-lives and for the differential distribution of [32P]ATP and [3H]ATP was also obtained from secretion studies. Stimulation of cell cultures with nicotine or scorpion venom 24 h after labeling with [3H]adenosine and 32Pi released relatively twice as much catecholamine as 32P-labeled compounds and relatively three times as much catecholamine as 3H-labeled compounds.  相似文献   

3.
Two iodophenylazide derivatives of reserpine and one iodophenylazide derivative of tetrabenazine have been synthesized and characterized as photoaffinity labels of the vesicle monoamine transporter (VMAT2). These compounds are 18-O-[3-(3'-iodo-4'-azidophenyl)-propionyl]methyl reserpate (AIPPMER), 18-O-[N-(3'-iodo-4'-azidophenethyl)glycyl]methyl reserpate (IAPEGlyMER), and 2-N-[(3'-iodo-4'-azidophenyl)-propionyl]tetrabenazine (TBZ-AIPP). Inhibition of [3H]dopamine uptake into purified chromaffin granule ghosts showed IC50 values of approximately 37 nM for reserpine, 83 nM for AIPPMER, 200 nM for IAPEGlyMER, and 2.1 microM for TBZ-AIPP. Carrier-free radioiodinated [125I]IAPEGlyMER and [125I]TBZ-AIPP were synthesized and used to photoaffinity label chromaffin granule membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed specific [125I]IAPEGlyMER labeling of a polypeptide that migrated as a broad band (approximately 55-90 kDa), with the majority of the label located between 70 and 80 kDa. The labeling by [125I]IAPEGlyMER was blocked by 100 nM reserpine, 10 microM tetrabenazine, 1 mM serotonin, and 10 mM (-)-norepinephrine and dopamine. Analysis of [125I]TBZ-AIPP-labeled chromaffin granule membranes by SDS-PAGE and autoradiography demonstrated specific labeling of a similar polypeptide, which was blocked by 1 microM reserpine and 10 microM tetrabenazine. Incubation of [125I]TBZ-AIPP-photolabeled chromaffin granule membranes in the presence of the glycosidase N-glycanase shifted the apparent molecular weight of VMAT2 to approximately 51 kDa. These data indicate that [125I]IAPEGlyMER and [125I]TBZ-AIPP are effective photoaffinity labels for VMAT2.  相似文献   

4.
Effects of vesicular monoamine transporter inhibitors on catecholamine release from bovine chromaffin cells have been examined at the level of individual exocytotic events. As expected for a depletion of vesicular stores, release evoked by depolarizing agents was decreased following 15-min incubations with reserpine and tetrabenazine, as evidenced by a decrease in exocytotic frequency and amount released per event. In contrast, two reserpine derivatives, methyl reserpate and reserpic acid, were much less effective. Surprisingly, the incubations also decreased the accompanying rise in intracellular Ca(2+) evoked by depolarizing agents. Subcellular studies revealed that reserpine and tetrabenazine at concentrations near their K(i) values not only could increase cytoplasmic catecholamines but also could displace Ca(2+) from vesicles. Furthermore, transient exposure to tetrabenazine and reserpine, but not methyl reserpate and reserpic acid, induced exocytotic release of catecholamines. Reserpine induced a rise in intracellular Ca(2+), as detected by whole-cell measurements with Fura-2. It could induce exocytosis, albeit at a lower frequency, in Ca(2+)-free solutions, supporting an internal Ca(2+) source. Depletion of endoplasmic reticulum and mitochondrial Ca(2+) pools did not eliminate the reserpine-activated release. These results indicate that vesicular Ca(2+) can play an important role in exocytosis and under some conditions may be involved in initiating this process.  相似文献   

5.
Cultures of bovine adrenomedullary chromaffin cells accumulated 1-[methyl-3H]methyl-4-phenylpyridinium ([3H]MPP+) in a time- and concentration-dependent manner with an apparent Km of 0.7 microM and a Vmax of 3 pmol/min/10(6) cells. The uptake was sodium dependent and sensitive to inhibitors of the cell-surface catecholamine transporter. At low concentrations of MPP+, the subcellular distribution was identical to that of endogenous catecholamines in the catecholamine-containing chromaffin vesicles. However, at a higher concentration of MPP+, a larger proportion of the toxicant was recovered in the cytosolic fraction, with less in the chromaffin vesicle fractions. When cells were prelabeled with [3H]MPP+, at 1 and 300 microM, and then permeabilized with digitonin in the absence of Ca2+, there was a proportionally greater release of MPP+ from the cells labeled at the higher concentration of the toxicant. In the presence of Ca2+, cell permeabilization induced a time-dependent secretion of catecholamines and a parallel secretion of MPP+. Under these conditions, the secretion of endogenous catecholamines was unaffected by the presence of MPP+. When the permeabilization studies were carried out in the presence of tetrabenazine, a massive release of MPP+ was observed in the absence of Ca2+ and was not further increased by Ca2+. In intact cells prelabeled with 300 microM [3H]MPP+, the secretagogues nicotine and veratridine elicited a Ca2+ -dependent secretion of catecholamines and MPP+ from the cells in similar proportions to their cellular contents. Barium-induced release of both species was independent of external Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Reserpic acid, a derivative of the antihypertensive drug reserpine, inhibits catecholamine transport into adrenal medullary chromaffin vesicles. Since it does not affect the membrane potential generated by the H+-translocating adenosine triphosphatase but inhibits ATP-dependent norepinephrine uptake with a Ki of about 10 microM, reserpic acid must block the H+/monoamine translocator. Because reserpic acid is much more polar than reserpine, it does not permeate the chromaffin vesicle membrane, nor is it transported into chromaffin vesicle ghosts in the presence of Mg2+-ATP. Although it inhibits norepinephrine transport when added externally, reserpic acid does not inhibit when trapped inside chromaffin vesicle ghosts. Therefore, reserpic acid must bind to the external face of the monoamine translocator and should be a good probe of the translocator's structural asymmetry.  相似文献   

7.
Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5 min decreased [3H]NE uptake capacity, an effect characterized by a robust decrease in the Vmax of the transport of [3H]NE. As expected, reserpine did not displace the binding of [3H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [3H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [3H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca2+/Ca2+–calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [3H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, α-methyl-p-tyrosine, increased [3H]NE uptake and eliminated the inhibitory effects of reserpine on [3H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca2+-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors.  相似文献   

8.
Dynamic Storage of Dopamine in Rat Brain Synaptic Vesicles In Vitro   总被引:2,自引:0,他引:2  
Abstract: The dynamics of catecholamine storage were studied in highly purified, small synaptic vesicles from rat brain both during active uptake or after inhibiting uptake with reserpine, tetrabenazine, or removal of external dopamine. To assess turnover during active uptake, synaptic vesicles were allowed to accumulate [3H]dopamine ([3H]DA) for ~10 min and then diluted 20-fold into a solution containing unlabeled DA under conditions such that active uptake could continue. After dilution, [3H]DA was lost with single exponential kinetics at a half-time of ~4 min at 30°C in 8 mM Cl? medium, in which both voltage and H+ gradients are present in the vesicles. In 90 mM Cl? medium, in which high H+ and Cl? gradients but no voltage gradient are present, [3H]DA escaped at a half-time of ~7 min. In both high and low Cl? media, ~40% of [3H]DA efflux was blocked by reserpine or tetrabenazine. The residual efflux also followed first-order kinetics. These results indicate that two efflux pathways were present, one dependent on DA uptake (and thus on the presence of external DA) and the other independent of uptake, and that both pathways function regardless of the type of electrochemical H+ gradient in the vesicles. The presence of both uptake-dependent and -independent efflux was observed in experiments using DA-free medium, instead of uptake inhibitors, to prevent uptake. Uptake-independent efflux showed molecular selectivity for catecholamines; [14C]DA was lost about three times faster than [3H]norepinephrine after adding tetrabenazine directly (without dilution) to vesicles that had taken up comparable amounts of each amine. In addition, the first-order rate constant for uptake-independent efflux showed little change over a 60-fold range of internal DA concentrations, which suggests that this pathway had a high transport capacity. All efflux was blocked at 0°C, suggesting that efflux did not occur through a large pore. There was little or no change in the proton gradient in synaptic vesicles, monitored by [14C]methylamine equilibration, during the experimental manipulations used here. Thus, the driving force for catecholamine uptake remained approximately constant. The physiological role of uptake-independent efflux could be to allow the monoamine content of synaptic vesicles to be regulated over a time range of minutes and, thereby, control the amount released by exocytosis. These results imply that catecholamines turn over with a half-time of minutes during active uptake by brain synaptic vesicles in vitro.  相似文献   

9.
Chromaffin granules isolated from bovine adrenal gland were incubated with (3)H-labelled nucleotides and [(14)C]noradrenaline to study the uptake of these substances. [(3)H]ATP, [(3)H]ADP and [(3)H]AMP are taken up by these organelles by the same temperature-dependent mechanism. The apparent K(m) for ATP and ADP is 1.4mm, and for AMP it is 2.9mm. The uptake of ATP has a flat pH optimum, whereas the catecholamine uptake increases with more alkaline pH. Atractyloside and carboxyatractyloside are competitive and specific inhibitors of nucleotide uptake, whereas reserpine inhibits only that for catecholamines. Mg(2+) ions activate uptake of both catecholamine and nucleotides, whereas EDTA and N-ethylmaleimide inhibit these processes. Nucleotide and catecholamine uptakes are inhibited by uncouplers of oxidative phosphorylation and by two ATP analogues. NH(4) (+) ions and nigericin in the presence of KCl inhibit only catecholamine uptake. It is concluded that nucleotide uptake, as proposed previously for catecholamine uptake, depends on an electrochemical proton gradient produced by a proton-translocating adenosine triphosphatase localized in the membrane of chromaffin granules. Furthermore, as suggested by the effect of NH(4) (+) and nigericin, catecholamine uptake apparently depends on the chemical part of this gradient, whereas the results for nucleotide uptake are consistent with its dependence on the electrical component.  相似文献   

10.
Bovine adrenomedullary chromaffin (BAMC) cells, cultured in a defined medium, were used to study the mechanisms of toxicity and cellular resistance to the catecholamine neuron toxicants 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+). The viability of the cells was assessed biochemically [cellular catecholamine content and the catalytic activities of tyrosine hydroxylase (TH) and lactate dehydrogenase (LDH)] and anatomically (by electron microscopy). When cultures of BAMC cells were exposed to MPTP or MPP+ for 3 days, a marked loss of cellular catecholamines and TH activity was observed. The addition of an inhibitor of monoamine oxidase (MAO) B (Ro 19-6327), but not MAO A (clorgyline), prevented the toxicity of MPTP but not that of MPP+. In addition, the cellular toxicity of MPP+, but not MPTP, was antagonized by desmethylimipramine, an inhibitor of cellular catecholamine uptake. The toxicity of MPP+ was time dependent, with losses of TH and the release of cellular LDH occurring after 48 h in culture. Catecholamine depletion occurred somewhat sooner, being evident after 24 h of exposure to MPP+. The cellular toxicity of MPP+ was concentration dependent and significantly enhanced by inhibitors of catecholamine vesicular uptake (reserpine, tetrabenazine, or Ro 4-1284). Electron microscopic examination of cells treated with either MPP+, tetrabenazine, or their combination revealed that MPP+ damaged BAMC cells and that this damage was markedly potentiated by the inhibition of vesicular uptake by tetrabenazine. The concentration of glucose in the culture media of untreated cells slowly decreased as a function of time. The rate of glucose consumption was markedly accelerated by MPP+ treatment and the losses in cell TH and the release of LDH into the media were preceded by a 99% depletion of glucose from the media. In cultures not treated with MPP+, lactate accumulated in the media as a function of time. Addition of MPP+ to the media increased the formation of lactate, in a concentration-dependent manner. Reserpine pretreatment further enhanced the production of lactate in response to MPP+. Culturing cells in glucose-free medium greatly potentiated the effects of MPP+ on cellular TH and catecholamines. The toxicity observed after 3 days' exposure of BAMC cells to MPP+ could be prevented when the medium was replaced with fresh medium every 24 h. The effects of glucose deprivation and reserpine were observed to be additive. The ability of MPP+ to affect mitochondrial function is determined by the capacity of the storage vesicle to sequester the pyridinium, acting as a cytosolic "buffer."(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
A fraction containing neurotransmitter storage vesicles was isolated from rat whole brain and brain regions, and the uptakes of [3H]norepinephrine and [3H]serotonin were determined in vitro. Norepinephrine uptake in vesicle preparations from corpus striatum was higher than in prep arations from cerebral cortex, and uptake in vesicles from the remainder (midbrain + brainstem + cerebellum) was intermediate. The Km for norepinephrine uptake was the same in the three brain regions, but the regions differed in maximal uptake capacity by factors which paralleled total catecholamine concentration rather than content of norepinephrine alone. Intracisternal administration of 6-hydroxydopamine, but not of 5,6-dihydroxytryptamine, reduced vesicular norepinephrine uptake, and pretreat-ment with desmethylimipramine (which protects specifically norepinephrine neurons but not dopamine neurons from the 6-hydroxydopamine) only partially prevented the loss of vesicular norepinephrine uptake. These studies indicate that uptake of norepinephrine by rat brain vesicle preparations occurs in vesicles from norepinephrine and dopamine neurons, but probably not in vesicles from serotonin neurons. Uptake of serotonin by brain vesicle preparations exhibited time, temperature and ATP-Mg2+ requirements nearly identical to those of norepinephrine uptake. The affinity of serotonin uptake matched that of serotonin for inhibition of norepinephrine uptake, and the maximal capacity was the same for serotonin as for norepinephrine. Norepinephrine, dopamine and reserpine inhibited serotonin uptake in a purely competitive fashion, with Kis similar to those for inhibition of norepinephrine uptake. Whereas 5,6-dihydroxytryptamine treatment reduced synaptosomal serotonin uptake but not vesicular serotonin uptake, 6-hydroxydopamine reduced vesicular serotonin uptake in the absence of reductions in synaptosomal serotonin uptake. Thus, in this preparation, serotonin appears to be taken up in vitro into catecholamine vesicles, rather than into serotonin vesicles.  相似文献   

12.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

13.
Abstract: "Synaptic-like microvesicles" are present in all neuroendocrine cells and cell lines. Despite their resemblance to small synaptic vesicles of the CNS. a thorough biochemical characterization is lacking. Moreover, the subcellular distribution of synaptophysin, the most abundant integral membrane protein of small synaptic vesicles, in adrenal medulla is still controversial. Using gradient centrifugation. we were able to compare the distribution of several markers for small synaptic vesicles and chromaffin granules. Synaptophysin was found at a high density (1.16 g/ml), purifying away from dopamine β-hydroxylase and cytochrome b561. Both noradrenaline and adrenaline showed a parallel distribution with synaptophysin, suggesting their presence in synaptic-like microvesicles. Experiments in the presence of tetrabenazine did not influence the catecholamine content. Additionally, tetrabenazine binding showed a consistent shoulder in the region of synaptophysin. [3H]-Noradrenaline uptake was blocked by tetrabenazine, but not by desipramine. Also chromogranin A parallels the distribution of synaptophysin: however, a localization in the Golgi cannot be ruled out. Synaptophysin was shown to undergo very fast phosphorylation, together with another triplet protein of ∼ 18 kDa. In contrast, the latter showed a rather bimodal distribution coinciding with synaptophysin and dopamine β-hydroxylase. Immunoelectron microscopy of synaptic-like microvesicle fractions showed an intense labeling for synaptophysin on 60-90-nm organelles. Whereas abundant gold labeling for cytochrome b561 was found over the entire surface of chromaffin granules, synaptophysin labeling was encountered mostly on vesicles adsorbed to granules. We conclude that catecholamines might be stored in synaptic-like microvesicles of the chromaffin cell.  相似文献   

14.
Processing of Proenkephalin in Adrenal Chromaffin Cells   总被引:1,自引:0,他引:1  
The processing of proenkephalin was studied using [35S]methionine pulse-chase techniques in primary cultures of bovine adrenal medullary chromaffin cells. Following radiolabeling, proenkephalin-derived peptides were extracted from the cells and separated by reverse-phase HPLC. Fractions containing proenkephalin fragments were digested with trypsin and carboxypeptidase B to liberate Met-enkephalin sequences and subjected to a second HPLC step to demonstrate association of radiolabel with Met-enkephalin. Processing of proenkephalin is complete within 2 h of synthesis, suggesting completion at or soon after incorporation into storage vesicles. Pretreatment of the cells with nicotine, histamine, or vasoactive intestinal peptide to enhance the rate of proenkephalin synthesis failed to alter the time course of processing and had minimal effects on the distribution of products formed. Addition of tetrabenazine, an inhibitor of catecholamine uptake into chromaffin vesicles, during radiolabeling and a 6-h chase period caused enhanced proenkephalin processing. These results suggest that the full range of proenkephalin fragments normally found in the adrenal medulla (up to 23.3 kDa) represents final processing products of the tissue and that termination of processing may depend on the co-storage of catecholamines.  相似文献   

15.
G Rudnick  S C Wall 《Biochemistry》1992,31(29):6710-6718
p-Chloroamphetamine (PCA) interacts with serotonin transporters in two membrane vesicle model systems by competing with serotonin for transport and stimulating efflux of accumulated serotonin. In plasma membrane vesicles isolated from human platelets, PCA competes with [3H]imipramine for binding to the serotonin transporter with a KD of 310 nM and competitively inhibits serotonin transport with a KI of 4.8 nM. [3H]Serotonin efflux from plasma membrane vesicles is stimulated by PCA in a Na(+)-dependent and imipramine-sensitive manner characteristic of transporter-mediated exchange. In membrane vesicles isolated from bovine adrenal chromaffin granules, PCA competitively inhibits ATP-dependent [3H]serotonin accumulation with a KI of 1.7 microM and, at higher concentrations, stimulates efflux of accumulated [3H]serotonin. Stimulation of vesicular [3H]serotonin efflux is due in part to dissipation of the transmembrane pH difference (delta pH) generated by ATP hydrolysis. Part of PCA's ability to stimulate efflux may be due to its transport by the vesicular amine transporter. Flow dialysis experiments demonstrated uptake of [3H]PCA into chromaffin granule membrane vesicles in response to the delta pH generated in the presence of Mg2+ and ATP. In plasma membrane vesicles, no accumulation was observed using an NaCl gradient as the driving force. We conclude that rapid nonmediated efflux of transported PCA prevents accumulation unless PCA is trapped inside by a low internal pH.  相似文献   

16.
1. Catecholamines are transported into chromaffin granules via a carrier-mediated, active-transport process which is inhibited by micromolar concentrations of the sulfhydryl reagent, N-ethylmaleimide (NEM). Reserpine is a very potent, competitive inhibitor of the catecholamine transporter and can be used to investigate the characteristics of the catecholamine transporter. 2. The purpose of this study was to determine whether [3H]reserpine binding to the catecholamine transporter present in chromaffin granule membranes isolated from bovine adrenal glands was also inhibited by NEM and, if so, whether this was a direct or an indirect effect of NEM on the catecholamine transporter. 3. Both [3H]norepinephrine transport into and [3H]reserpine binding to the chromaffin granule ghosts isolated from bovine adrenal glands are inhibited by NEM, with IC50 values of 0.63 +/- 0.02 and 2.8 +/- 0.66 microM, respectively. 4. Mg and ATP protected both the [3H]norepinephrine transport into the ghosts and the [3H]reserpine binding to the transporter from inhibition by NEM, shifting the IC50 values to 260 +/- 43 and 120 +/- 29 microM, respectively. 5. NEM inhibition of the catecholamine transport and reserpine binding appears to be due to an action on the proton translocator associated with the Mg ATPase enzyme rather than a direct action on the catecholamine transporter since (a) the concentration of NEM required to inhibit formation of a membrane potential is similar to that required to inhibit [3H]norepinephrine transport into and [3H]reserpine binding to the ghosts and (b) Mg and ATP protected the proton translocation and [3H]norepinephrine transport into the ghosts, and [3H]reserpine binding to the ghosts, from inhibition by NEM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
An iodinated azido derivative of ketanserin, 7-azido-8-[125I]iodoketanserin ( [125I]AZIK), has been used to label the monoamine transporter of bovine chromaffin granule membranes by the technique of photoaffinity labeling. In the dark, this derivative was found to bind reversibly to the membranes, with an equilibrium dissociation constant estimated to be 6 nM at 0 degrees C. As for ketanserin, binding occurred at the tetrabenazine site: (i) [125I]AZIK was displaced efficiently from its binding site by tetrabenazine, ketanserin, and 7-azidoketanserin, whereas serotonin, which is a substrate for the transporter but has a low affinity for tetrabenazine binding site, was a poor displacer; pipamperone and pyrilamine, two antagonists of respectively serotonin S2 and histamine H1 receptors, were inactive. (ii) 7-Azidoketanserin was a competitive inhibitor of [3H]dihydrotetrabenazine binding, and it inhibited the ATP-dependent uptake of serotonin by chromaffin granule ghosts. Irradiation of [125I]AZIK with long-wavelength UV light, followed by electrophoresis on sodium dodecyl sulfate/polyacrylamide gels and autoradiography, revealed irreversible labeling of a membrane component with an apparent molecular weight of 73,000. Tetrabenazine inhibited the labeling of this 73-kDa band in a manner parallel to the binding of [125I]AZIK in the dark. Such a labeling is totally compatible with previous results obtained through photolabeling with a tetrabenazine derivative or by target size analysis. Moreover, preliminary experiments showed that [125I]AZIK can label the tetrabenazine binding sites of various sources including rat striatum, rabbit platelets, human pheochromocytoma, and human adrenal medulla. Therefore, this molecule appears to be an excellent probe to label the monoamine transporter of different amine storage vesicles even without purification.  相似文献   

18.
Secretion of adenosine(5')tetraphospho(5')adenosine (Ap4A) and ATP from perfused bovine adrenal glands stimulated with acetylcholine or elevated potassium levels was measured and compared with that of catecholamines. We have found a close correlation between the release of Ap4A and catecholamines elicited with all the secretagogues used in the presence of either Ca2+ or Ba2+, suggesting co-release of both constituents from the chromaffin granules. By contrast, ATP secretion, as measured with luciferase, showed a significantly different time course regardless of the secretagogue used. ATP secretion consistently decreased after 1-2 min of stimulation at a time when Ap4A and catecholamine secretions were still increasing. Measures of degradation of injected [3H]ATP to the gland during stimulation showed little difference in the level of uptake or decomposition of ATP throughout the pulse. However, a reexamination of ATP secretion by monitoring its products of degradation (AMP, adenosine, and inosine) by HPLC techniques showed that Ap4A, ATP, and catecholamines are indeed secreted in parallel from the perfused adrenal gland.  相似文献   

19.
Characterization of the catecholamine transporter in chromaffin granule membranes has been hampered by the lack of a radioligand with high specific activity which binds selectively to the carrier with high affinity. We report here the identification of a high affinity binding site for [3H]reserpine on chromaffin granule membranes isolated from bovine adrenal gland which has the characteristics expected of the catecholamine transporter. [3H]Reserpine bound predominately to a high affinity site with a Kd for [3H]reserpine of 9 nM and a binding site density of 7.8 pmol/mg of protein. Comparison of the characteristics of the high affinity reserpine binding site to the characteristics of catecholamine transport indicated that (a) the Ki and rank order of potency for inhibition of [3H]reserpine binding by various biogenic amines was similar to their Ki for inhibition of catecholamine transport (b) both the inhibition of (-)-[3H]norepinephrine transport and inhibition of [3H]reserpine binding showed similar stereo-specificity, and (c) Kd for binding of reserpine to chromaffin granule membranes was similar to the Ki for reserpine inhibition of catecholamine transport. These results demonstrate that the high affinity binding site for [3H]reserpine on chromaffin granule membranes is associated with the catecholamine transporter.  相似文献   

20.
J Shioi  S Naito    T Ueda 《The Biochemical journal》1989,258(2):499-504
Measurements have been made of the ATP-dependent membrane potential (delta psi) and pH gradient (delta pH) across the membranes of the synaptic vesicles purified from bovine cerebral cortex, using the voltage-sensitive dye bis[3-propyl-5-oxoisoxazol-4-yl]pentamethine oxanol and the delta pH-sensitive fluorescent dye 9-aminoacridine respectively. A pre-existing small delta pH (inside acidic) was detected in the synaptic vesicles, but no additional significant contribution by MgATP to delta pH was observed. In contrast, delta psi (inside positive) increased substantially upon addition of MgATP. This ATP-dependent delta psi was reduced by thiocyanate anion (SCN-), a delta psi dissipator, or carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a protonmotive-force dissipator. Correspondingly, a substantially larger glutamate uptake occurred in the presence of MgATP, which was inhibited by SCN- and FCCP. A nonhydrolysable analogue of ATP, adenosine 5'-[beta gamma-methylene]triphosphate, did not substitute for ATP in either delta psi generation or glutamate uptake. The results support the hypothesis that a H+-pumping ATPase generates a protonmotive force in the synaptic vesicles at the expense of ATP hydrolysis, and the protonmotive force thus formed provides a driving force for the vesicular glutamate uptake. The delta psi generation by ATP hydrolysis was not affected by orthovanadate, ouabain or oligomycin, but was inhibited by N-ethylmaleimide, quercetin, trimethyltin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid. These results indicate that the H+-pumping ATPase in the synaptic vesicle is similar to that in the chromaffin granule, platelet granule and lysosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号