首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood–brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60 s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress.  相似文献   

4.
The RPL10A gene encodes the RPL10 protein, required for joining 40S and 60S subunits into a functional 80S ribosome. This highly conserved gene, ubiquitous across all eukaryotic super-groups, is characterized by a variable number of spliceosomal introns, present in most organisms. These properties facilitate the recognition of orthologs among distant taxa and thus comparative studies of sequences as well as the distribution and properties of introns in taxonomically distant groups of eukaryotes. The present study examined the multiple ways in which RPL10A conservation vs. sequence changes in the gene over the course of evolution, including in exons, introns, and the encoded proteins, can be exploited for evolutionary analysis at different taxonomic levels. At least 25 different positions harboring introns within the RPL10A gene were determined in different taxa, including animals, plants, fungi, and alveolates. Generally, intron positions were found to be well conserved even across different kingdoms. However, certain introns seemed to be restricted to specific groups of organisms. Analyses of several properties of introns, including insertion site, phase, and length, along with exon and intron GC content and exon–intron boundaries, suggested biases within different groups of organisms. The use of a standard primer pair to analyze a portion of the intron-containing RPL10A gene in 12 genera of green algae within Chlorophyta is presented as a case study for evolutionary analyses of introns at intermediate and low taxonomic levels. Our study shows that phylogenetic reconstructions at different depths can be achieved using RPL10A nucleotide sequences from both exons and introns as well as the amino acid sequences of the encoded protein.  相似文献   

5.
Three 1AR subtypes have been cloned so far and are designated as 1a, 1b, and 1d. Organspecific distribution pattern and subtype-specific effects are known but not fully understood. To address a cell-type specific expression pattern in the heart we investigated expression pattern of 1AR subtypes on RNA and proteinlevel in heart tissue, cultured cardiomyocytes and nonmyocytes of the rat. Each 1ARsubtype mRNA was present in neonatal and adult rat heart culture but the relative distribution pattern was significantly different. While the 1aAR subtype is preferentially expressed in adult cardiomyocytes, the 1bAR subtype was preferentially expressed in the nonmyocyte cell fraction. The RTPCR results were confirmed by Westernblotting (1b) and immunocytochemical studies. Incubation with an 1agonist (phenylephrine) for 72 h led to a significant reduction of the 1bAR in neonatal heart cell culture on both mRNA and protein level. In contrast, incubation with an 1antagonist (prazosin) induced a 1.6 fold upregulation of the 1aAR mRNA without significant effects on radioligand binding and functional assay. The results indicate a distribution pattern of the 1AR subtype which is specific for cell type and ontogeny of the rat heart and may be regulated by adrenergic agents.  相似文献   

6.
Expression of the human Ke 6 gene, 17β-hydroxysteroid dehydrogenase type 8, in E. coli and the substrate specificity of the expressed protein were examined. The tissue distribution of mRNA expression of the human Ke 6 gene was also studied using real-time PCR. Human Ke 6 gene was expressed as an enzymatically-active His-tag fusion protein, whose molecular weight was estimated to be 32.5 kDa by SDS-polyacrylamide gel electrophoresis. Expressed human Ke 6 gene effectively catalyzed the conversion of estradiol into estrone. Testosterone, 5α-dihydrotestosterone, and 5-androstene-3β,17β-diol were also catalyzed into the corresponding 17-ketosteroid at 2.4–5.9% that of estradiol oxidation. Furthermore, expressed enzyme catalyzed the reduction of estrone to estradiol, but the rate was a mere 2.3%. Human Ke 6 gene mRNA was expressed in the various tissues examined, such as brain, cerebellum, heart, lung, kidney, liver, small intestine, ovary, testis, adrenals, placenta, prostate, and stomach. Expression of human Ke 6 gene mRNA was especially abundant in prostate, placenta, and kidney. The levels in prostate and placenta were higher than that in kidney, where it is known to be expressed in large quantities.  相似文献   

7.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

8.
9.
Expression divergence, rather than sequence divergence, has been shown to be important in speciation, particularly in the early stages of divergence of traits involved in reproductive isolation. In the two European subspecies of house mice, Mus musculus musculus and Mus musculus domesticus, earlier studies have demonstrated olfactory‐based assortative mate preference in populations close to their hybrid zone. It has been suggested that this behaviour evolved following the recent secondary contact between the two taxa (~3,000 years ago) in response to selection against hybridization. To test for a role of changes in gene expression in the observed behavioural shift, we conducted a RNA sequencing experiment on mouse vomeronasal organs. Key candidate genes for pheromone‐based subspecies recognition, the vomeronasal receptors, are expressed in these organs. Overall patterns of gene expression varied significantly between samples from the two subspecies, with a large number of differentially expressed genes between the two taxa. In contrast, only ~200 genes were found repeatedly differentially expressed between populations within M. m. musculus that did or did not display assortative mate preferences (close to or more distant from the hybrid zone, respectively), with an overrepresentation of genes belonging to vomeronasal receptor family 2. These receptors are known to play a key role in recognition of chemical cues that handle information about genetic identity. Interestingly, four of five of these differentially expressed receptors belong to the same phylogenetic cluster, suggesting specialization of a group of closely related receptors in the recognition of odorant signals that may allow subspecies recognition and assortative mating.  相似文献   

10.
11.
12.

Background  

Adipose tissues serve not only as a store for energy in the form of lipid, but also as endocrine tissues that regulates metabolic activities of the organism by secreting various kinds of hormones. Peroxisome proliferator activated receptor γ (PPARγ) is a key regulator of adipocyte differentiation that induces the expression of adipocyte-specific genes in preadipocytes and mediates their differentiation into adipocytes. Furthermore, PPARγ has an important role to maintain the physiological function of mature adipocyte by controlling expressions of various genes properly. Therefore, any reduction in amount and activity of PPARγ is linked to the pathogenesis of metabolic syndrome.  相似文献   

13.
14.
Capsule?Of 26 species of wintering waterbirds, 18 showed an increase in numbers, five showed a decrease and two showed no change.

Aim?To assess long-term trends in the numbers and distribution of the 26 most abundant wintering waterbird species in the Czech Republic.

Methods?We used International Waterbird Census data from between 48 and 639 wetland sites which had been counted annually in the Czech Republic from 1966 to 2008. From these data long-term changes in numbers and distributions were determined. Log-linear Poisson regression analysis was used to estimate missing data using trim software. The distribution of each species was described as the ratio of the number of sites occupied by that species to the total number of sites investigated.

Results?Increasing trends were found for 18 species, five species were found to be declining, one species was stable and two species were found with uncertain trends. Wintering distributions (the ratio of sites occupied by a given species to the total number of sites counted) increased in 16 species and decreased in two species, broadly correlated with the species changes in numbers.

Conclusion?In most species changes in numbers as well as changes in distribution followed the Western Palearctic population trends. Those species which increased were mainly piscivores and included geese, ducks and gulls. Scarcer species also exhibited an increase in numbers. The changes in numbers (both positive and negative) were more frequent among species associated with running water, whereas species which showed uncertain trends were more frequently recorded on standing water, which is more affected by variable weather conditions.  相似文献   

15.
Within the ovary, Estrogen Receptor β (ERβ) is localized to the granulosa cells of growing follicles. 17β-estradiol (E2) acting via ERβ augments the actions of follicle stimulating hormone in granulosa cells, leading to granulosa cell differentiation and formation of a preovulatory follicle. Adult ERβ-null females are subfertile and possess ovaries with reduced numbers of growing follicles and corpora lutea. Because the majority of E2 production by granulosa cells occurs once puberty is reached, a role for ERβ in the ovary prior to puberty has not been well examined. We now provide evidence that lack of ERβ disrupts gene expression as early as post-natal day (PND) 13, and in particular, we identify a number of genes of the extracellular matrix (ECM) that are significantly higher in ERβ-null follicles than in wildtype (WT) follicles. Considerable changes occur to the ECM occur during normal folliculogenesis to allow for the dramatic growth, cellular differentiation, and reorganization of the follicle from the primary to preovulatory stage. Using quantitative PCR and immunofluorescence, we now show that several ECM genes are aberrantly overexpressed in ERβ-null follicles. We find that Collagen11a1, a protein highly expressed in cartilage, is significantly higher in ERβ-null follicles than WT follicles as early as PND 13, and this heightened expression continues through PND 23-29 into adulthood. Similarly, Nidogen 2, a highly conserved basement membrane glycoprotein, is elevated in ERβ-null follicles at PND 13 into adulthood, and is elevated specifically in the ERβ-null focimatrix, a basal lamina-like matrix located between granulosa cells. Focimatrix laminin and Collagen IV expression were also higher in ERβ-null ovaries than in WT ovaries at various ages. Our findings suggest two novel observations: a) that ERβ regulates granulosa cell gene expression ovary prior to puberty, and b) that ERβ regulates expression of ECM components in the mouse ovary.  相似文献   

16.
Platelet-derived growth factor (PDGF), abundant in bone tissue, has been reported to stimulate mesenchymal cell proliferation and migration. To elucidate the functional roles of PDGF during fracture healing, we investigated the expression of PDGF-A and -B chain proteins and receptor α and β mRNAs in fractured mouse tibiae. Twelve-week-old male BALB/c mice were operated on to make a closed fracture on the proximal tibia. On days 2, 4, 7, 10, 14, 21, and 28 after the operation, the fractured tibiae were excised, fixed with 4% paraformaldehyde, decalcified with 20% EDTA, and embedded in paraffin to prepare 7-μm sections. Immunohistochemistry using polyclonal antibodies against human PDGF-A and -B chains was carried out by the avidin-biotin-peroxidase method. For in situ hybridization, we used digoxigenin-labeled single-stranded DNA probes specific for mouse PDGF receptors α and β generated by unidirectional polymerase chain reaction. In the inflammatory phase on days 2–4 after the fracture, mesenchymal cells gathering at the fracture site expressed the PDGF-B chain and β receptor mRNA. At the stage of cartilaginous callus formation on day 7, the immunoreactivity for PDGF-A and -B chains on proliferating and hypertrophic chondrocytes and the signals of α and β receptor mRNAs on proliferating chondrocytes became manifest. At the stage of bony callus and bone remodeling on days 14–21, the predominant expression of the PDGF-B chain and β receptor was observed on both osteoclasts and osteoblasts. On day 28, signals for PDGF ligand proteins and receptor mRNAs diminished. The coincidental localization of PDGF ligands and their receptors implies a paracrine and autocrine mechanism. Our data suggested that PDGF contributed in part to the promotion of the chondrogenic and osteogenic changes of mesenchymal cells from the early to the midphase of fracture healing; the functions mediated by the β receptor, including cell migration, might be prerequisites to the recruitment of mesenchymal cells in the initial step and to the interaction between osteoclasts and osteoblasts in the bone remodeling phase. Accepted: 2 June 1999  相似文献   

17.
Ng KP  Saw TL  Na SL  Soo-Hoo TS 《Mycopathologia》2001,149(3):141-146
A total of 102 Candida species were isolated from blood cultures from January 1997 to October 1999. Using assimilation of carbohydrate test, 52 (51.0%) of the Candida sp. were identified as C. parapsilosis, 25.5% (26) were C. tropicalis. C. albicans made up 11.8% (12), 6.9% (7) were C. rugosa, 3.8% (4) C. glabrata and 1% (1) C. guilliermondii. No C. dubliniensis was found in the study. In vitro antifungal susceptibility tests showed that all Candida species were sensitive to nystatin, amphotericin B and ketoconazole. Although all isolates remained sensitive to fluconazole, intermediate susceptibility was found in 3 C. rugosa isolates. Antifungal agents with high frequency of resistance were econazole, clotrimazole, miconazole and 5-fluorocytosine. Candida species found to have resistance to these antifungal agents were non-C. albicans. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
Heregulin-α (HRGα) is a cytokine secreted by the mammary mesenchyme, adjacent to lobuloalveolar structures. To understand the role of HRGα and its receptors in mammary glands, and the underlying mechanisms, we performed this study to determine the expression and localization of HRGα and its receptors ErbB2 and ErbB3. We also determined the role of HRGα in the development of mammary glands, β-casein expression and secretion, Rab3A protein expression and the phosphorylation of HRGα signaling molecules using confocal laser scanning microscopy, tissue culture, capillary electrophoresis, Western blotting and enzyme-linked immunosorbent assays. We found that a peak was on pregnancy day 15. Changes of ErbB2 and ErbB3 expression were positively and linearly correlated with HRGα, indicating that HRGα positively regulates ErbB2 and ErbB3 expression. During pregnancy, HRGα enhanced the phosphorylation of STAT5, p42/p44, p38, PKC and Rab3A protein expression, stimulated the proliferation and differentiation of the ductal epithelial cells of mammary glands, and increased and maintained the expression and secretion of β-casein. During lactation, HRGα enhanced the phosphorylation of STAT5 and p38, inhibited the phosphorylation of PKC and Rab3A protein expression, maintained the morphology of the mammary glands and increased the secretion of lactoprotein to reduce the expression of β-casein in mammary epithelial cells. During involution, HRGα induced the phosphorylation of STAT3 and Rab3A protein expression, and inhibited the phosphorylation of PKC to stimulate the degeneration of mammary epithelial cells. It also inhibited the secretion of β-casein, resulting in increased levels of β-casein in mammary epithelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号