首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
B16 melanoma (B16M) cells with high GSH content show high metastatic activity. However, the molecular mechanisms linking GSH to metastatic cell survival are unclear. The possible relationship between GSH and the ability of Bcl-2 to prevent cell death was studied in B16M cells with high (F10) and low (F1) metastatic potential. Analysis of a Bcl-2 family of genes revealed that B16M-F10 cells, as compared with B16M-F1 cells, overexpressed preferentially Bcl-2 (approximately 5.7-fold). Hepatic sinusoidal endothelium-induced B16M-F10 cytotoxicity in vitro increased from approximately 19% (controls) to approximately 97% in GSH-depleted B16M-F10 cells treated with an antisense Bcl-2 oligodeoxynucleotide (Bcl-2-AS). l-Buthionine (S,R)-sulfoximine-induced GSH depletion or Bcl-2-AS decreased the metastatic growth of B16M-F10 cells in the liver. However, the combination of l-buthionine (S,R)-sulfoximine and Bcl-2-AS abolished metastatic invasion. Bcl-2-overexpressing B16M-F1/Tet-Bcl-2 and B16M-F10/Tet-Bcl-2 cells, as compared with controls, showed an increase in GSH content, no change in the rate of GSH synthesis, and a decrease in GSH efflux. Thus, Bcl-2 overexpression may increase metastatic cell resistance against oxidative/nitrosative stress by inhibiting release of GSH. In addition, Bcl-2 availability regulates the mitochondrial GSH (mtGSH)-dependent opening of the permeability transition pore complex. Death in B16M-F10 cells was sharply activated at mtGSH levels below 30% of controls values. However, this critical threshold increased to approximately 60% of control values in Bcl-2-AS-treated B16M-F10 cells. GSH ester-induced replenishment of mtGSH levels (even under conditions of cytosolic GSH depletion) prevented cell death. Our results indicate that survival of B16M cells with high metastatic potential can be challenged by inhibiting their GSH and Bcl-2 synthesis.  相似文献   

2.
High GSH content associates with high metastatic activity in B16-F10 melanoma cells cultured to low density (LD B16M). GSH homeostasis was investigated in LD B16M cells that survive after adhesion to the hepatic sinusoidal endothelium (HSE). Invasive B16M (iB16M) cells were isolated using anti-Met-72 monoclonal antibodies and flow cytometry-coupled cell sorting. HSE-derived NO and H(2)O(2) caused GSH depletion and a decrease in gamma-glutamylcysteine synthetase activity in iB16M cells. Overexpression of gamma-glutamylcysteine synthetase heavy and light subunits led to a rapid recovery of cytosolic GSH, whereas mitochondrial GSH (mtGSH) further decreased during the first 18 h of culture. NO and H(2)O(2) damaged the mitochondrial system for GSH uptake (rates in iB16M were approximately 75% lower than in LD B16M cells). iB16M cells also showed a decreased activity of mitochondrial complexes II, III, and IV, less O(2) consumption, lower ATP levels, higher O(2) and H(2)O(2) production, and lower mitochondrial membrane potential. In vitro growing iB16M cells maintained high viability (>98%) and repaired HSE-induced mitochondrial damages within 48 h. However, iB16M cells with low mtGSH levels were highly susceptible to TNF-alpha-induced oxidative stress and death. Therefore depletion of mtGSH levels may represent a critical target to challenge survival of invasive cancer cells.  相似文献   

3.
Highly metastatic B16 melanoma (B16M)-F10 cells, as compared with the low metastatic B16M-F1 line, have higher GSH content and preferentially overexpress BCL-2. In addition to its anti-apoptotic properties, BCL-2 inhibits efflux of GSH from B16M-F10 cells and thereby may facilitate metastatic cell resistance against endothelium-induced oxidative/nitrosative stress. Thus, we investigated in B16M-F10 cells which molecular mechanisms channel GSH release and whether their modulation may influence metastatic activity. GSH efflux was abolished in multidrug resistance protein 1 knock-out (MRP-/-1) B16M-F10 transfected with the Bcl-2 gene or in MRP-/-1 B16M-F10 cells incubated with l-methionine, which indicates that GSH release from B16M-F10 cells is channeled through MRP1 and a BCL-2-dependent system (likely related to an l-methionine-sensitive GSH carrier previously detected in hepatocytes). The BCL-2-dependent system was identified as the cystic fibrosis transmembrane conductance regulator, since monoclonal antibodies against this ion channel or H-89 (a protein kinase A-selective inhibitor)-induced inhibition of cystic fibrosis transmembrane conductance regulator gene expression completely blocked the BCL-2-sensitive GSH release. By using a perifusion system that mimics in vivo conditions, we found that GSH depletion in metastatic cells can be achieved by using Bcl-2 antisense oligodeoxynucleotide- and verapamil (an MRP1 activator)-induced acceleration of GSH efflux, in combination with acivicin-induced inhibition of gamma-glutamyltranspeptidase (which limits GSH synthesis by preventing cysteine generation from extracellular GSH). When applied under in vivo conditions, this strategy increased tumor cytotoxicity (up to approximately 90%) during B16M-F10 cell adhesion to the hepatic sinusoidal endothelium.  相似文献   

4.
Glutamine potentiates TNF-alpha-induced tumor cytotoxicity   总被引:4,自引:0,他引:4  
L-glutamine (Gln) sensitizes tumor cells to tumor necrosis factor (TNF)-alpha-induced cytotoxicity. The type and mechanism of cell death induced by TNF-alpha was studied in Ehrlich ascites tumor (EAT)-bearing mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln). A high rate of Gln oxidation promotes a selective depletion of mitochondrial glutathione (mtGSH) content to approximately 58% of the level found in tumor mitochondria of mice fed a nutritionally complete elemental diet (standard diet, SD). The mechanism of mtGSH depletion involves a glutamate-induced inhibition of GSH transport from the cytosol into mitochondria. The increase in reactive oxygen intermediates (ROIs) production induced by TNF-alpha further depletes mtGSH to approximately 35% of control values, which associates with a decrease in the mitochondrial transmembrane potential (MMP), and elicits mitochondrial membrane permeabilization and release of cytochrome c. Mitochondrial membrane permeabilization was also found in intact tumor cells cultured with a Gln-enriched medium under conditions of buthionine sulfoximine (BSO)-induced selective GSH synthesis inhibition. Enforced expression of the bcl-2 gene in tumor cells could not avoid the glutamine- and TNF-alpha-induced cell death under conditions of mtGSH depletion. However, addition of GSH ester, which delivers free intracellular GSH and increases mtGSH levels, preserved cell viability. These findings show that glutamine oxidation and TNF-alpha, by causing a change in the glutathione redox status within tumor mitochondria, activates the molecular mechanism of apoptotic cell death.  相似文献   

5.
Intravenous administration to mice of trans-pterostilbene (t-PTER; 3,5-dimethoxy-4'-hydroxystilbene) and quercetin (QUER; 3,3',4',5,6-pentahydroxyflavone), two structurally related and naturally occurring small polyphenols, inhibits metastatic growth of highly malignant B16 melanoma F10 (B16M-F10) cells. t-PTER and QUER inhibit bcl-2 expression in metastatic cells, which sensitizes them to vascular endothelium-induced cytotoxicity. However, the molecular mechanism(s) linking polyphenol signaling and bcl-2 expression are unknown. NO is a potential bioregulator of apoptosis with controversial effects on Bcl-2 regulation. Polyphenols may affect NO generation. Short-term exposure (60 min/day) to t-PTER (40 microM) and QUER (20 microM) (approximate mean values of the plasma concentrations measured within the first hour after intravenous administration of 20 mg of each polyphenol/kg) down-regulated inducible NO synthetase in B16M-F10 cells and up-regulated endothelial NO synthetase in the vascular endothelium and thereby facilitated endothelium-induced tumor cytotoxicity. Very low and high NO levels down-regulated bcl-2 expression in B16M-F10 cells. t-PTER and QUER induced a NO shortage-dependent decrease in cAMP-response element-binding protein phosphorylation, a positive regulator of bcl-2 expression, in B16M-F10 cells. On the other hand, during cancer and endothelial cell interaction, t-PTER- and QUER-induced NO release from the vascular endothelium up-regulated neutral sphingomyelinase activity and ceramide generation in B16M-F10 cells. Direct NO-induced cytotoxicity and ceramide-induced mitochondrial permeability transition and apoptosis activation can explain the increased endothelium-induced death of Bcl-2-depleted B16M-F10 cells.  相似文献   

6.
Mitochondrial glutathione depletion by glutamine in growing tumor cells   总被引:3,自引:0,他引:3  
The effect of L-glutamine (Gln) on mitochondrial glutathione (mtGSH) levels in tumor cells was studied in vivo in Ehrlich ascites tumor (EAT)-bearing mice. Tumor growth was similar in mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln) or a nutritionally complete elemental diet (SD). As compared with non-tumor-bearing mice, tumor growth caused a decrease of blood Gln levels in mice fed an SD but not in those fed a GED. Tumor cells in mice fed a GED showed higher glutaminase and lower Gln synthetase activities than did cells isolated from mice fed an SD. Cytosolic glutamate concentration was 2-fold higher in tumor cells from mice fed a GED ( approximately 4 mM) than in those fed an SD. This increase in glutamate content inhibited GSH uptake by tumor mitochondria and led to a selective depletion of mitochondrial GSH (mtGSH) content (not found in mitochondria of normal cells such as lymphocytes or hepatocytes) to approximately 57% of the level found in tumor mitochondria of mice fed an SD. In tumor cells of mice fed a GED, 6-diazo-5-norleucine- or L-glutamate-gamma-hydrazine-induced inhibition of glutaminase activity decreased cytosolic glutamate content and restored GSH uptake by mitochondria to the rate found in EAT cells of mice fed an SD. The partial loss of mtGSH elicited by Gln did not affect generation of reactive oxygen intermediates (ROIs) or mitochondrial functions (e.g., intracellular peroxide levels, O(2)(-)(*) generation, mitochondrial membrane potential, mitochondrial size, adenosine triphosphate and adenosine diphosphate contents, and oxygen consumption were found similar in tumor cells isolated from mice fed an SD or a GED); however, mitochondrial production ROIs upon TNF-alpha stimulation was increased. Our results demonstrate that glutamate derived from glutamine promotes an inhibition of GSH transport into mitochondria, which may render tumor cells more susceptible to oxidative stress-induced mediators.  相似文献   

7.
We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2 -generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.  相似文献   

8.
The present study investigated the effects of flupirtine (Katadolon) on tumor necrosis factor (TNF)-alpha-mediated cell death and Bcl-2 expression in the permanent rat oligodendrocyte cell line OLN-93 (OLN cells). TNF-alpha (500 U/ml) induced apoptosis of OLN cells, which was confirmed by DNA fragmentation using an in situ end-labeling technique and ultrastructural analysis. Flupirtine significantly reduced the rate of spontaneous cell death of OLN cells already at low concentrations; TNF-alpha-mediated apoptosis was suppressed only with higher concentrations of flupirtine (100 microM:). Expression of Bcl-2 protein and mRNA in OLN cells was detected by immunocytochemistry, western blot, and RT-PCR. Quantitative analysis of western blots revealed an approximately 2. 5-fold up-regulation of Bcl-2 protein during TNF-alpha treatment. Furthermore, addition of 10 or 100 microM: flupirtine before incubation with TNF-alpha led to an approximately threefold increase of Bcl-2 expression. Exposure of OLN cells to flupirtine alone moderately augmented the expression of Bcl-2 protein. Our data demonstrate that flupirtine up-regulates the expression of Bcl-2 protein in OLN cells; this Bcl-2 induction is associated with a reduced rate of TNF-alpha-induced cell death.  相似文献   

9.
The family of non‐coding mitochondrial RNAs (ncmtRNA) is differentially expressed according to proliferative status. Normal proliferating cells express sense (SncmtRNA) and antisense ncmtRNAs (ASncmtRNAs), whereas tumor cells express SncmtRNA and downregulate ASncmtRNAs. Knockdown of ASncmtRNAs with oligonucleotides induces apoptotic cell death of tumor cells, leaving normal cells unaffected, suggesting a potential application for developing a novel cancer therapy. In this study, we knocked down the ASncmtRNAs in melanoma cell lines with a lentiviral‐encoded shRNA approach. Transduction with lentiviral constructs targeted to the ASncmtRNAs induced apoptosis in murine B16F10 and human A375 melanoma cells in vitro and significantly retarded B16F10 primary tumor growth in vivo. Moreover, the treatment drastically reduced the number of lung metastatic foci in a tail vein injection assay, compared to controls. These results provide additional proof of concept to the knockdown of ncmtRNAs for cancer therapy and validate lentiviral–shRNA vectors for gene therapy.  相似文献   

10.
B16 melanoma F10 (B16-F10) cells with high glutathione (GSH) content show high metastatic activity in vivo. An intertissue flow of GSH, where the liver is the main reservoir, can increase GSH content in metastatic cells and promote their growth. We have studied here possible tumor-derived molecular signals that could activate GSH release from hepatocytes. GSH efflux increases in hepatocytes isolated from mice bearing liver or lung metastases, thus suggesting a systemic mechanism. Fractionation of serum-free conditioned medium from cultured B16-F10 cells and monoclonal antibody-induced neutralization techniques facilitated identification of interleukin (IL)-6 as a tumor-derived molecule promoting GSH efflux in hepatocytes. IL-6 activates GSH release through a methionine-sensitive/organic anion transporter polypeptide 1- and multidrug resistance protein 1-independent channel located on the sinusoidal site of hepatocytes. Specific siRNAs were used to knock down key factors in the main signaling pathways activated by IL-6, which revealed a STAT3-dependent mechanism. Our results show that IL-6 (mainly of tumor origin in B16-F10-bearing mice) may facilitate GSH release from hepatocytes and its interorgan transport to metastatic growing foci.  相似文献   

11.
Several tumor immunotherapy approaches result in a low percentage of durable responses in selected cancers. We hypothesized that the insensitivity of cancer cells to immunotherapy may be related to an anti-apoptotic cancer cell milieu, which could be pharmacologically reverted through the inhibition of antiapoptotic Bcl-2 family proteins in cancer cells. ABT-737, a small molecule inhibitor of the antiapoptotic proteins Bcl-2, Bcl-w and Bcl-xL, was tested for the ability to increase antitumor immune responses in two tumor immunotherapy animal models. The addition of systemic therapy with ABT-737 to the immunization of BALB/c mice with tumor antigen peptide-pulsed dendritic cells (DC) resulted in a significant delay in CT26 murine colon carcinoma tumor growth and improvement in survival. However, the addition of ABT-737 to either a vaccine strategy involving priming with TRP-2 melanoma antigen peptide-pulsed DC and boosting with recombinant Listeria monocytogenes expressing the same melanoma antigen, or the adoptive transfer of TCR transgenic cells, did not result in superior antitumor activity against B16 murine melanoma. In vitro studies failed to demonstrate increased cytotoxic lytic activity when testing the combination of ABT-737 with lymphokine activated killer (LAK) cells, or the death receptor agonists Fas, TRAIL-ligand or TNF-alpha against the CT26 and B16 cell lines. In conclusion, the Bcl-2 inhibitor ABT-737 sensitized cancer cells to the antitumor effect of antigen-specific immunotherapy in a vaccine model for the CT26 colon carcinoma in vivo but not in two immunotherapy strategies against B16 melanoma.  相似文献   

12.
Abstract: Bcl-2 is an antiapoptotic protein located in the outer mitochondrial membrane. Cellular perturbations associated with programmed cell death may be the consequence of disrupted mitochondrial function as well as excessive production of reactive oxygen species (ROS). Numerous studies indicate that Bcl-2 is involved in opposing cell death induced by oxidative stimuli, but its mode of action is uncertain. We reexamined the role of Bcl-2 by using a loss-of-function model, Bcl-2 knockout mice. Brains from Bcl-2 -deficient mice had a 43% higher content of oxidized proteins and 27% lower number of cells in the cerebellum relative to wild-type mice. Incubation of cerebellar neurons from Bcl-2 +/+ brains with 0.5 m M dopamine caused 25% cell death, whereas in Bcl-2 -deficient cells, it resulted in 52% death; glial cells provided protection in both cultures. Splenocytes from Bcl-2 -deficient mice were also killed more effectively by dopamine as well as paraquat. Bcl-2 -deficient mice did not survive intraperitoneal injection of MPTP, which caused a decrease in dopamine level in the striatum of Bcl-2 +/− brains, which was more significant than in wild-type mice. When compared with Bcl-2 +/+ brains, brains of 8-day-old Bcl-2 -deficient mice had higher activities of the antioxidant enzymes GSH reductase (192%) and GSH transferase (142%), whereas at the age of 30 days, GSH peroxidase was significantly lower (66%). Activities of GSH transferase and GSH reductase increased significantly (158 and 262%, respectively) from day 8 to day 30 in Bcl-2 +/+ mice, whereas GSH peroxidase decreased (31%) significantly in Bcl-2 −/− animals. In summary, our results demonstrated enhanced oxidative stress and susceptibility to oxidants as well as altered levels of antioxidant enzymes in brains of Bcl-2 -deficient mice. It is concluded that Bcl-2 affects cellular levels of ROS, which may be due to an effect either on their production or on antioxidant pathways.  相似文献   

13.
Endothelial cells are the primary targets of circulating immune and inflammatory mediators. We hypothesize that interleukin-18, a proinflammatory cytokine, induces endothelial cell apoptosis. Human cardiac microvascular endothelial cells (HCMEC) were treated with interleukin (IL) 18. mRNA expression was analyzed by ribonuclease protection assay, protein levels by immunoblotting, and cell death by enzyme-linked immunosorbent assay and fluorescence-activated cell sorter analysis. We also investigated the signal transduction pathways involved in IL-18-mediated cell death. Treatment of HCMEC with IL-18 increases 1) NF-kappaB DNA binding activity; 2) induces kappaB-driven luciferase activity; 3) induces IL-1beta and TNF-alpha expression via NF-kappaB activation; 4) inhibits antiapoptotic Bcl-2 and Bcl-X(L); 5) up-regulates proapoptotic Fas, Fas-L, and Bcl-X(S) expression; 6) induces fas and Fas-L promoter activities via NF-kappaB activation; 7) activates caspases-8, -3, -9, and BID; 8) induces cytochrome c release into the cytoplasm; 9) inhibits FLIP; and 10) induces HCME cell death by apoptosis as seen by increased annexin V staining and increased levels of mono- and oligonucleosomal fragmented DNA. Whereas overexpression of Bcl-2 significantly attenuated IL-18-induced endothelial cell apoptosis, Bcl-2/Bcl-X(L) chimeric phosphorothioated 2'-MOE-modified antisense oligonucleotides potentiated the proapoptotic effects of IL-18. Furthermore, caspase-8, IKK-alpha, and NF-kappaB p65 knockdown or dominant negative IkappaB-alpha and dominant negative IkappaB-beta or kinase dead IKK-beta significantly attenuated IL-18-induced HCME cell death. Effects of IL-18 on cell death are direct and are not mediated by intermediaries such as IL-1beta, tumor necrosis factor-alpha, or interferon-gamma. Taken together, our results indicate that IL-18 activates both intrinsic and extrinsic proapoptotic signaling pathways, induces endothelial cell death, and thereby may play a role in myocardial inflammation and injury.  相似文献   

14.
Previously, we showed that cellular glutathione/glutathione disulfide (GSH/GSSG) play an important role in apoptotic signaling, and early studies linked mitochondrial GSH (mtGSH) loss to enhanced cytotoxicity. The current study focuses on the contribution of mitochondrial GSH transport and mitochondrial GSH/GSSG status to apoptosis initiation in a nontransformed colonic epithelial cell line, NCM460, using menadione (MQ), a quinone with redox cycling bioreactivity, as a model of oxidative challenge. Our results implicate the semiquinone radical in MQ-mediated apoptosis, which was associated with marked oxidation of the mitochondrial soluble GSH and protein-bound thiol pools, mitochondria-to-cytosol translocation of cytochrome c, and activation of caspase-9. MQ-induced apoptosis was potentiated by inhibition of mtGSH uptake in accordance with exacerbated mitochondrial GSSG (mtGSSG) and protein-SSG and compromised mitochondrial respiratory activity. Moreover, cell apoptosis was prevented by N-acetyl-L-cysteine (NAC) pretreatment, which restored cellular redox homeostasis. Importantly, mtGSH transport inhibition effectively blocked NAC-mediated protection in accordance with its failure to attenuate mtGSSG. These results support the importance of mitochondrial GSH transport and the mtGSH status in oxidative cell killing.  相似文献   

15.
The insulin-like growth factor (IGF)-independent effects of insulin-like growth factor binding protein-3 (IGFBP-3) to effect cellular apoptosis have now been described in various cellular systems. IGFBP-3 mediates transforming growth factor-beta-induced apoptosis. Other growth-inhibitory and apoptosis-inducing agents such as tumor necrosis factor-alpha (TNF-alpha) and the tumor suppressor gene p53 also induce IGFBP-3. In this report, we demonstrate the role of IGFBP-3 as a mediator of apoptosis induced by TNF-alpha and elucidate the process involved in its signaling mechanism. Treatment of PC-3 cells with TNF-alpha resulted in the induction of IGFBP-3 expression in a dose- and time-dependent fashion and also induced apoptosis. TNF-alpha-induced apoptosis was prevented by cotreatment with IGFBP-3 neutralizing antibodies or IGFBP-3-specific antisense thiolated oligonucleotides. Both IGFBP-3 and TNF-alpha treatment increased the levels of the inactive, serine phosphorylated form of the survival protein Bcl-2. The effect of TNF-alpha on Bcl-2 serine phosphorylation was blocked by IGFBP-3 antisense oligomers. These findings confirm that IGFBP-3 is essential for TNF-alpha-induced apoptosis in PC-3 cells and that this IGFBP-3 effect includes the inactivation of Bcl-2 through serine phosphorylation.  相似文献   

16.
The observation that follicular dendritic cells (FDC) reduce apoptosis in B cells prompted the hypothesis that FDC might enhance tumor cell survival by protecting malignant B cells from apoptotic death. To test this notion, apoptosis was induced in B cell lymphomas by anti-Fas or various antineoplastic agents in the presence and absence of FDC. Apoptosis was detected and quantified by TUNEL analysis. Induction of apoptosis with anti-Fas, etoposide, cyclophosphamide, and busulfan was markedly antagonized by FDC at FDC to B cell ratios of >/=1:16. For example, treatment with 10 ng/ml anti-Fas caused 60-90% of A20 cells to undergo apoptosis in 6 h, whereas addition of FDC reduced apoptosis to background levels (3-15%). Similarly, treatment with busulfan induced apoptosis in 55-80% of A20 cells, whereas addition of FDC reduced B cell death to 相似文献   

17.
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.  相似文献   

18.
Glutathione (GSH) plays a critical role in cellular defense against unregulated oxidative stress in mammalian cells including neurons. We previously demonstrated that GSH decrease using [D, L]-buthionine sulphoximine (BSO) induces retinal cell death, but the underlying mechanisms of this are still unclear. Here, we demonstrated that retinal GSH level is closely related to retinal cell death as well as expression of an anti-apoptotic molecule, Bcl-2, in the retina. We induced differential expression of retinal GSH by single and multiple administrations of BSO, and examined retinal GSH levels and retinal cell death in vivo. Single BSO administration showed a transient decrease in the retinal GSH level, whereas multiple BSO administration showed a persistent decrease in the retinal GSH level. Retinal cell death also showed similar patterns: transient increases of retinal cell death were observed after single BSO administration, whereas persistent increases of retinal cell death were observed after multiple BSO administration. Changes in the retinal GSH level affected Bcl-2 expression in the retina. Immunoblot and immunohistochemical analyses showed that single and multiple administration of BSO induced differential expressions of Bcl-2 in the retina. Taken together, the results of our study suggest that the retinal GSH is important for the survival of retinal cells, and retinal GSH appears to be deeply related to Bcl-2 expression in the retina. Thus, alteration of Bcl-2 expression may provide a therapeutic tool for retinal degenerative diseases caused by retinal oxidative stress such as glaucoma or retinopathy.  相似文献   

19.
Many tumor cells are impaired in adhesion-regulated apoptosis, which contributes to their metastatic potential. However, suppression of this apoptotic pathway in untransformed cells is not mediated only by adhesion to the extracellular matrix but also through the resulting ability to spread and adopt a distinct morphology. Since cell spreading is dependent on the integrity of the actin microfilament cytoskeleton, we sought to determine if actin depolymerization was sufficient to induce apoptosis, even in the presence of continuous attachment. For this study, we used a human mammary epithelial cell line (MCF10A), which is immortalized but remains adhesion dependent for survival. Treatment of MCF10A cells with latrunculin-A (LA), an inhibitor of actin polymerization, rapidly led to disruption of the actin cytoskeleton and caused cell rounding but preserved attachment. Initiation of apoptosis in LA-treated MCF10A cells was detected by mitochondrial localization of the Bax apoptotic protein, which was prevented by overexpression of Bcl-2. DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage in LA-treated MCF10A cells indicated progression to the execution phase of apoptosis. The MDA-MB-453 cell line, which was derived from a metastatic human mammary tumor, was resistant to PARP cleavage and loss of viability in response to actin depolymerization. Stable overexpression of Bcl-2 in the untransformed MCF10A cells was able to recapitulate the resistance to apoptosis found in the tumor cell line. We demonstrate that inhibition of actin polymerization is sufficient to stimulate apoptosis in attached MCF10A cells, and we present a novel role for Bcl-2 in cell death induced by direct disruption of the actin cytoskeleton.  相似文献   

20.
In sepsis there is extensive apoptosis of lymphocytes, which may be beneficial by down-regulating the accompanying inflammation. Alternatively, apoptosis may be detrimental by impairing host defense. We studied whether Bcl-2, a potent antiapoptotic protein, could prevent lymphocyte apoptosis in a clinically relevant model of sepsis. Transgenic mice in which Bcl-2 was overexpressed in T cells had complete protection against sepsis-induced T lymphocyte apoptosis in thymus and spleen. Surprisingly, there was also a decrease in splenic B cell apoptosis in septic Bcl-2 overexpressors compared with septic HeJ and HeOuJ mice. There were marked increases in TNF-alpha, IL-1beta, and IL-10 in thymic tissue in sepsis in the three species of mice, and the increase in TNF-alpha and IL-10 in HeOuJ mice was greater than that in Bcl-2 mice. Mitotracker, a mitochondrial membrane potential indicator, demonstrated a sepsis-induced loss of membrane potential in T cells in HeJ and HeOuJ mice but not in Bcl-2 mice. Importantly, Bcl-2 overexpressors also had improved survival in sepsis. To investigate the potential impact of loss of lymphocytes on survival in sepsis, Rag-1-/- mice, which are totally deficient in mature T and B cells, were also studied. Rag-1-/- mice had decreased survival compared with immunologically normal mice with sepsis. We conclude that overexpression of Bcl-2 provides protection against cell death in sepsis. Lymphocyte death may be detrimental in sepsis by compromising host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号