首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L‐plants were sprayed with ABA (abscisic acid) during exposure to L. L‐plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M‐plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L‐plants were almost similar to the M‐plants, while their transpiration rate and stomatal conductance were identical to that of L‐plants. The stomatal response to ABA was lost in L‐plants, but also after 1‐day exposure of M‐plants to low VPD. The level of foliar ABA sharply decreased within 1‐day exposure to L, while the level of ABA‐GE (ABA‐glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1‐day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4‐day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli.  相似文献   

2.
《Plant science》1988,54(1):75-81
A rapid-cycling line of Brassica compestris L was grown from seed to maturity in vitro. Ethylene accumulated in culture containers throughout the growth period when these were tightly sealed (i.e. closed with aluminum foil, tight plastic caps, parafilm or rubber stoppers), whereas no C2H4 was detected in vented containers (i.e. closed with foam or cotton plugs, or loosely fitted plastic caps). Under both closure conditions, mean levels of CO2, O2 and N2 were similar to atmospheric levels. The accumulation of C2H4 in sealed containers was associated with inhibition of plant development. Plants grown in a sealed condition had swollen hypocotyls, fewer and smaller leaves and either abortive flowers or no floral buds whereas plants in vented containers developed normally to maturity. Significant reversion to normal development was observed when plants growing in sealed containers were treated with 2,5-norbornadie e (NBD), an anti-C2H4 compound. Treatment with NBD offers a promising way of regulating C2H4 effects in vitro.  相似文献   

3.
The aim of this work was to examine the ability of ABA and proline to counteract the deleterious effect of water deficit stress on cell membrane injuries. Six-day-old seedlings of two barley genotypes (cv. Aramir, line R567) were treated with ABA (2·10−4 M) or proline (0.1 M) for 24 h, and then subjected to osmotic stress for 24h, by immersing their roots in polyethylene glycol (PEG 6000) solution of osmotic potential of −1.0 MPa and −1.5 MPa or by submerging the leaf pieces in PEG solution of osmotic potential of −1.6 MPa. Pretreatment of plants with ABA and proline caused an increase of free proline level in the leaves. Plants treated with ABA exhibited a lower membrane injury index under water stress conditions than those untreated even when no effect of this hormone on RWC in the leaves of stressed plants was observed. Pretreatment of plants with proline prevented to some extent membrane damage in leaves of the stressed seedlings, but only in the case when stress was imposed to roots. Improvement in water status of leaves was also observed in seedlings pretreatment with proline. The protective effect of both ABA and proline was more pronounced in line R567 that exhibited higher membrane injury under water deficit stress conditions.  相似文献   

4.
在室内研究了不同浓度外源ABA处理和不同水分胁迫对 6种不同基因型的三叶草 (TrifoliumsubterraneumL .)生长的影响。当三叶草的第四片叶完全展开时 ,向营养液中施加不同浓度的ABA时对盆栽土壤进行控水。在处理的 1,4 ,7和 11d ,测定植株鲜重、叶片数、最长根长 ,以表示三叶草的生长状况。各参试品种以上三项生长指标均受外源ABA和水分胁迫的影响而呈现下降的趋势。同时 ,叶片水势值随ABA浓度的增加和水分胁迫强度的增加而明显降低。在 10 -4mol/LABA处理 11d后 ,参试品种平均生长量的减少与水分胁迫 15d后其生长量的减少的结论一致。在不同浓度ABA处理下 ,不同基因型三叶草平均叶片数 ,完全展开叶面积和每株干物质重约降低了5 0 % ,而其根冠比却增加了 80 %。不同基因型三叶草生长参数间的变化及排序结果与盆栽相同品种获得的实验结果非常相似。品种Clare、Nuba和SeatonPark在对照和处理下均表现最好。由于三叶草对一定浓度范围的外源ABA的反应与其在盆栽水分胁迫下的反应结果十分相似 ,因此 ,利用外源ABA处理的方法来研究不同基因型三叶草的耐旱性将可能是一种行之有效的方法。  相似文献   

5.
The tos1 (tomato osmotically sensitive) mutant, isolated from an in vitro screen of root growth during osmotic stress, was less sensitive to exogenous ABA, but accumulated more ABA under osmotic stress than WT plants. We assessed growth and water relations characteristics of hydroponically grown tos1 seedlings (in the absence of osmotic stress) at low and high evaporative demands. Growth of tos1 was severely inhibited at both high and low evaporative demands. Twenty DAS, WT and tos1 genotypes had a similar leaf water and turgor potential, but mature tos1 plants (45 day old) showed a significant diurnal loss of leaf turgor, with recovery overnight. Increased evaporative demand increased turgor loss of tos1 plants. High evaporative demand at the beginning of the day decreased stomatal conductance of tos1, without diurnal recovery, thus whole plant transpiration was decreased. De-topped tos1 seedlings showed decreased root hydraulic conductance and had a 1.4-fold increase in root ABA concentration. Impaired root function of tos1 plants failed to meet transpirational water demand and resulted in shoot turgor loss, stomatal closure and growth inhibition.  相似文献   

6.
Successful propagation of Cineraria saxifraga was achieved using apical softwood cuttings and micropropagation protocols. Plants propagated using micropropagation had a multiplication rate eight times that of the original population after 4 wk. Apical cuttings were subjected to a standard conductive freezing test to establish the freezing tolerance of the species. Results showed that cold‐acclimated plants had a 43% increased survival compared to non‐acclimated plants. Using plants established from tissue culture, two further freezing tests were conducted to establish the effects of surface water and container size on the frost resistance of this species. Surface water significantly decreased survival score compared to dry plants. Plants grown in small containers had a significant decrease in plant survival score compared to those grown in large containers.  相似文献   

7.
Early signals potentially regulating leaf growth and stomatal aperture in field-grown maize (Zea mays L.) subjected to drought were investigated. Plants grown in a field lysimeter on two soil types were subjected to progressive drought during vegetative growth. Leaf ABA content, water status, extension rate, conductance, photosynthesis, nitrogen content, and xylem sap composition were measured daily. Maize responded similarly to progressive drought on both soil types. Effects on loam were less pronounced than on sand. Relative to fully-watered controls, xylem pH increased by about 0.2 units one day after withholding irrigation (DAWI) and conductivity decreased by about 0.25 mS cm(-1) 1-3 DAWI. Xylem nitrate, ammonium, and phosphate concentrations decreased by about 50% at 1-5 DAWI and potassium concentration decreased by about 50% at 7-8 DAWI. Xylem ABA concentration consistently increased by 45-70 pmol ml(-1) at 7 DAWI. Leaf extension rate decreased 5 DAWI, after the changes in xylem chemical composition had occurred. Leaf nitrogen significantly decreased 8-16 DAWI in droughted plants. Midday leaf water potential and photosynthesis were significantly decreased in droughted plants late in the drying period. Xylem nitrate concentration was the only ionic xylem sap component significantly correlated to increasing soil moisture deficit and decreasing leaf nitrogen concentration. Predawn leaf ABA content in droughted plants increased by 100-200 ng g(-1) dry weight at 7 DAWI coinciding with a decrease in stomatal conductance before any significant decrease in midday leaf water potential was observed. Based on the observed sequence, a chain of signal events is suggested eventually leading to stomatal closure and leaf surface reduction through interactive effects of reduced nitrogen supply and plant growth regulators under drought.  相似文献   

8.
Rooting volume restriction (RVR) reduces shoot growth of plantsprovided with sufficient water or nutrients. The effects ofRVR on water status, abscisic acid (ABA) levels in leaves, roots,or xylem sap from detopped plants of watermelon [Citrullus lanatus(Thunb.) Matsum. and Nakai ‘StarBrite’] seedlingswere evaluated with five rooting volumes (18, 26, 36, 46, or80 cm3). Shoot water potential increased with increasing rootingvolume, with no difference between plants from 18 and 26 cm3cells or between plants from 36 and 46 cm3 cells. Stomatal conductancewas not consistently affected by RVR; at 10 and 20 DAE, stomatalconductance in plants grown in 36 cm3 cells was higher thanthat of plants grown in any other cell volume. Severe RVR (18and/or 26 cm3) tended to produce plants with higher ABA levelsin roots (15 DAE only), xylem sap (all dates), and leaves (5and 10 DAE). Plants grown in 18 and 26 cm3 cells had higherroot ABA levels than those from 46 and 80 cm3 cells at 15 DAE.Plants grown in 18 cm3 cells had the highest xylem sap ABA levelat all dates, but ABA levels did not differ among plants grownin the other cell volumes. Plants grown in 18 cm3 cells at 5DAE and 18 and 26 cm3 cells at 10 DAE also had higher leaf ABAlevels than those from other rooting volumes. The results suggestthat ABA may act as a signal for reduced growth of plants underRVR conditions. Key words: Abscisic acid, ABA, root signals, root volume restriction, water relations  相似文献   

9.
During the first hours of chilling, bean (Phaseolus vulgaris L., cv Mondragone) seedlings suffer severe water stress and wilt without any significant increase in leaf abscisic acid (ABA) content (P. Vernieri, A. Pardossi, F. Tognoni [1991] Aust J Plant Physiol 18: 25-35). Plants regain turgor after 30 to 40 h. We hypothesized that inability to rapidly synthesize ABA at low temperatures contributes to chilling-induced water stress and that turgor recovery after 30 to 40 h is mediated by changes in endogenous ABA content. Entire bean seedlings were subjected to long-term (up to 6 d) chilling (3°C, 0.2-0.4 kPa vapor pressure deficit, 100 μmol·m−2·s−1 photosynthetic photon flux density, continuous fluorescent light). During the first 24 h, stomata remained open, and plants rapidly wilted as leaf transpiration exceeded root water absorption. During this phase, ABA did not accumulate in leaves or in roots. After 24 h, ABA content increased in both tissues, leaf diffusion resistance increased, and plants rehydrated and regained turgor. No osmotic adjustment was associated with turgor recovery. Following turgor recovery, stomata remained closed, and ABA levels in both roots and leaves were elevated compared with controls. The application of ABA (0.1 mm) to the root system of the plants throughout exposure to 3°C prevented the chilling-induced water stress. Excised leaves fed 0.1 mm ABA via the transpiration stream had greater leaf diffusion resistance at 20 and 3°C compared with non-ABA fed controls, but the amount of ABA needed to elicit a given degree of stomatal closure was higher at 3°C compared with 20°C. These findings suggest that endogenous ABA may play a role in ameliorating plant water status during chilling.  相似文献   

10.
A technique for studying variation in the accumulation of abscisicacid (ABA) in response to drought stress is described. Two experiments,each testing 26 spring wheat genotypes, were carried out usingpot grown plants in controlled environment cabinets with nutrientsolution culture, though the results of only one experimentare described in detail. Plants were subjected to water stressby withholding water as the fifth or sixth leaf on the mainstem was emerging. Two stressed plants of each genotype wereharvested 5 and 7 days after the treatment commenced and measurementsof leaf water potential, stomatal conductance and ABA concentrationwere taken. There was considerable genotypic variation in the rate at whichwater potential decreased, partly explained by variation inplant size. Inia 66 (a genotype common to both experiments)had consistently much lower water potentials than the othergenotypes. Stomatal conductances of all genotypes decreasedrapidly and after 5 and 7 days they were negatively correlatedwith the changes in water potential. ABA concentrations varied considerably between genotypes afterboth 5 and 7 days without water, the variation being associatedwith genotypic differences in water potential on these occasions.The overall relationship between ABA concentration and waterpotential was highly significant. Significant differences betweenthe slopes of the regressions for individual genotypes werefound. The cultivar Sirius accumulated the most ABA at any waterpotential and Pelissier, Wascana and Hybrid 46 accumulated theleast. The significance for drought resistance of variation in ABAaccumulation is discussed. Triticum aestivum L. ABA, wheat, absasic acid, leaf water potential, stomatal conductance  相似文献   

11.
In this work we investigated the function of abscisic acid (ABA) as a long-distance chemical signal communicating water shortage from the root to the shoot in citrus plants. Experiments indicated that stomatal conductance, transpiration rates, and leaf water potential decline progressively with drought. ABA content in roots, leaves, and xylem sap was also increased by the drought stress treatment three- to sevenfold. The addition of norflurazon, an inhibitor of ABA biosynthesis, significantly decreased the intensity of the responses and reduced ABA content in roots and xylem fluid, but not in leaves. Polyethylene glycol (PEG)-induced osmotic stress caused similar effects and, in general, was counteracted only by norflurazon at the lowest concentration (10%). Partial defoliation was able to diminish only leaf ABA content (22.5%) at the highest PEG concentration (30%), probably through a reduction of the active sites of biosynthesis. At least under moderate drought (3–6 days without irrigation), mechanisms other than leaf ABA concentration were required to explain stomatal closure in response to limited soil water supply. Measurements of xylem sap pH revealed a progressive alkalinization through the drought condition (6.4 vs. 7.1), that was not counteracted with the addition of norflurazon. Moreover, in vitro treatment of detached leaves with buffers iso-osmotically adjusted at pH 7.1 significantly decreased stomatal conductance (more than 30%) as much as 70% when supplemented with ABA. Taken together, our results suggest that increased pH generated in drought-stressed roots is transmitted by the xylem sap to the leaves, triggering reductions in shoot water loss. The parallel rise in ABA concentration may act synergistically with pH alkalinization in xylem sap, with an initial response generated from the roots and further promotion by the stressed leaves.  相似文献   

12.
Wolfram Hartung 《Oecologia》1976,26(2):177-183
Summary Eight- to 10-day-old plants ofPhaseolus coccineus, which grow on vermiculite with a water content of 12–17% of the water-holding capacity, stop growing completely, whereas water potential and relative water content are almost unaffected. [2-14C]Abscisic acid, which is applied to the midrib of a primary leaf, is transported especially to the roots and the apical bud, but not to the second primary leaf and the cotyledons. Water-stressed plants, however, export only negligible amounts of ABA from the donor leaf to the plant. Thus an accumulation of ABA occurs in the donor leaf. Consequently water stress can increase ABA concentration in leaves not only by stimulating ABA synthesis but also by inhibiting ABA transport. Recovery of growth and ABA transport after reirrigation is very weak. Water stress has no effect on ABA metabolism in bean plants.Abbreviations ABA abscisic acid - GA gibberellic acid - IAA indoleacetic acid - RWC relative water content in plants - TLC thin-layer chromatography  相似文献   

13.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

14.
The effects of varied rooting volumes on root growth and source leaf carbohydrate metabolism were studied in greenhouse-grown cucumber (Cucumis sativus L cv Calypso) plants. Plants were grown for 7 weeks in container volumes that ranged from 0.4 to 5.9 liters. Plants grown in the smaller containers exhibited less leaf expansion, lower root and shoot weight, and fewer lateral stems than plants grown in the 5.9 liter containers. Shoot/root ratio was not altered by the container volume, suggesting coordination of root and shoot growth due to rooting volume. Source leaf carbon exchange rates, assimilate export rates, and starch accumulation rates for plants grown in 0.4 liter containers were approximately one-half or less in comparison to those for plants grown in 5.9 liter containers. Starch concentrations per unit leaf area were maintained at high levels in source leaves of plants grown in 0.4 liter containers over the entire day/night cycle. Lower extractable galactinol synthase activities and higher galactinol concentrations occurred in leaves of plants grown in 0.4 liter container volumes. The reduced sink demand, induced by restricted root growth, may have led to increased starch concentrations and to a reduction in stachyose biosynthesis in cucumber source leaves.  相似文献   

15.
Two experiments indicate that abscisic acid (ABA) may influencestomatal behaviour of Commelina communis L. Stomatal conductancecould not be correlated with bulk leaf ABA content but whenthe abaxial epidermis was assayed for ABA, small increases inABA content correlated well with limitations of leaf conductance.Restricted conductance of the abaxial surface of leaves wasassociated with an increase of approximately 40 amole ABA perstomatal complex. This agrees with previously published figures. When roots of individual plants were split between two containers,drying the soil around one part of the root system restrictedleaf conductance, even though leaf water relations were notaffected. Increased ABA content of the epidermis coincided withincreased ABA content of the roots in drying soil. Other rootsof the same plant in moist soil did not show increased ABA content.These results suggest that in drying soil, ABA can move fromthe roots to the epidermis and restrict stomatal aperture evenwhen leaf water potentials and turgors remain constant. Theimportance of this mechanism in providing a sensitive foliarresponse to decreasing soil moisture is discussed. Key words: Soil drying, ABA, roots, stomata, water relations  相似文献   

16.
Water and osmotic potentials were measured in leaves of a drought-sensitive ('Ponca') and a drought-resistant ('KanKing') cultivar of winter wheat ( Triticum aestivum L . em. Thell.) to determine if the potentials of the drought-sensitive cultivar could be made similar to those of the drought-resistant cultivar through application of abscisic acid (ABA). Stomatal resistance was also measured. Plants were sprayed with ABA and grown in soil, which was watered or allowed to dry. In well-watered plants, ABA closed the stomata of both cultivars. Stomatal resistance of plants grown without added water and with ABA was less than that of plants grown without added water and without ABA. Under ample water supply, ABA decreased water and osmotic potentials of the drought-sensitive cultivar (Ponca), but had no effect on these potentials in the drought-resistant cultivar (KanKing). Under water-deprived conditions, ABA increased water and osmotic potentials of Ponca, but did not change these potentials in KanKing. The overall effect of ABA was to decrease the differences in the water and osmotic potentials between the two cultivars.  相似文献   

17.
A very low, for the most part unmeasurable glutamic-aspartio transminase activity and a very high glutamic-alanine transaminase activity was found in the overground parts and roots of young wheat plants. The roots had a higher glutamic-alanine transaminase activity than the overground parts in the first and second leaf stage. Plants cultivated in Knop’s nutrient solution (variant with humate and without) showed a higher glutamic-alanine transaminase activity than poorly growing plants, cultivated in distilled water (with humate and without). In plants cultivated in nutrient solutions, transaminase activity increased with the age of the wheat plants. As in the previous experiments, the effect of humate was only significant, in the roots of plants cultivated in distilled water with humate, where transamination activity was greater than in the control without humate. The roots of this variant with a stimulatory growth effect showed a large accumulation of free sugars in the previous experiments. The connection between these effects of humate on the roots of young winter wheat plants is discussed.  相似文献   

18.
Plants of Helianthus annuus were grown in soil in pots suchthat approximately 30% of the root system protruded throughthe base of the pot. After 7 d further growth in aerated nutrientsolution, the attached, protruding roots were air-dried for10–15 min and thereafter surrounded with moist still air,in the dark, for 49 h, whilst the soil was kept at field capacity.The roots of the control plants remained in the nutrient solutionthroughout the experiment. This treatment rapidly reduced the water content of protrudingroots from 20.5 to 17.8 g g–1 dry mass (DM), which remainedless than that of the control roots for the rest of the experiment.This treatment also reduced root turgor and water potential.The abscisic acid (ABA) concentrations in the protruding roots,xylem sap and leaves of the treated plants increased significantly,compared to values recorded for control plants. In treated roots, the ABA concentration was significantly increased4 h after treatment, with a maximum of 4.4+0.1 nmol g–1(DM) after 25 h. The ABA concentration in the xylem sap of thetreated plants was significantly greater than in the controls25 h, 30 h, and 49 h after the partial drying of the roots,with a maximum concentration of approximately 970 pmol ABA cm-3at 49 h. Initially, the ABA concentration in the leaves was0.45 nmol g–1 (DM) which increased significantly to 1.1±0.1 nmol g–1 at 25 h, to 1.7±0.3 nmol g–1at 49 h. Leaf conductance was significantly less in plants with air-driedroots than in the controls 8 h after the start of the treatmentand thereafter. The water relations of the leaves of the treatedplants did not differ from those of the control plants. These results confirm previous reports that ABA is rapidly generatedin partially-dried and attached root systems and demonstratesa concomitant large increase in the ABA content of the xylemsap. It is suggested that partial dehydration of some of theroots of Helianthus annuus, increases ABA concentration in thetranspiration stream and decreases leaf conductance in the absenceof changes in leaf water status. As these responses were initiatedin free-growing roots the stimulus is independent of any increasesin soil shear strength that are associated with soil drying. Key words: Soil drying, roots, ABA, leaf conductance, water relations  相似文献   

19.
Leaves from in vitro and greenhouse cultured plants of Malusdomestica (Borkh.) cv. Mark were subjected to 4 h of darkness;4 h of 1 M mannitol induced water stress; 1 h of 10–4M to 10–7 M cis-trans abscisic acid (ABA) treatment; 1h of 0.12% atmospheric CO2. Stomatal closure was determinedby microscopic examination of leaf imprints. In all treatments,less than 5% of the stomata from leaves of in vitro culturedplants were closed. The diameter of open stomata on leaves fromin vitro culture remained at 8 µm. In contrast, an averageof 96% of the stomata on leaves of greenhouse grown plants wereclosed after 4 h in darkness; 56% after 4 h of mannitol inducedwater stress; 90% after 1 h of 10–4 M ABA treatment; 61%after 1 h in an atmosphere of 0.12% CO2. Stomata of in vitroapple leaves did not seem to have a closure mechanism, but acquiredone during acclimatization to the greenhouse environment. Thelack of stomatal closure in in vitro plants was the main causeof rapid water loss during transfer to low relative humidity.  相似文献   

20.
This paper describes the physiological effects of abscisic acid (ABA) and 100 mM NaCl on citrus plants. Water potential, leaf abscission, ethylene production, photosynthetic rate, stomatal conductance, and chloride accumulation in roots and leaves were measured in plants of Salustiana scion [Citrus sinensis (L) Osbeck] grafted onto Carrizo citrange (Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) rootstock. Plants under salt stress accumulated high amounts of chloride, increased ethylene production, and induced leaf abscission. Stomatal conductance and photosynthetic rates rapidly dropped after salinization. The addition of 10 mM ABA to the nutrient solution 10 days before the exposure to salt stress reduced ethylene release and leaf abscission. These effects were probably due to a decrease in the accumulation of toxic Cl- ions in leaves. In non-salinized plants, ABA reduced stomatal conductance and CO2 assimilation, whereas in salinized plants the treatment slightly increased these two parameters. The results suggest a protective role for ABA in citrus under salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号