首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin E (VE) analogues, epitomized by alpha-tocopheryl succinate (alpha-TOS), are potent inducers of apoptosis and anti-cancer agents. Here, we tested their effect on the highly malignant N-type neuroblastoma (Nb) cells and their differentiated, neurone-like counterparts. Nb cells were highly susceptible to several VE analogues, while differentiated Nb cells were relatively resistant to alpha-TOS. The importance of caspase-9 rather than caspase-8, as judged by specific siRNAs studies, together with the loss of the inner mitochondrial potential, suggests that alpha-TOS triggers apoptosis in Nb cells via the mitochondrial pathway. Cultured Nb cells were sensitized to alpha-TOS by pre-treatment with Bcl-2, Bcl-xL or Mcl-1 siRNAs, while the malignant cell line was more resistant to the vitamin E analogue when Bax was knocked down. In contrast, overexpression of Bcl-2 in Nb cells rendered them more resistant to alpha-TOS-induced apoptosis. The resistance of differentiated Nb cells to alpha-TOS-mediated apoptosis occurred via two modes: first, by up-regulation of the anti-apoptotic Bcl-2 family proteins and second, by accumulation of decreased levels of reactive oxygen species when challenged with alpha-TOS. We conclude that alpha-TOS is highly selective in killing malignant brain cancer cells while relatively inert toward differentiated neuronal cells, and that vitamin E analogues may be novel therapeutics for the treatment of tumours such as neuroblastomas.  相似文献   

2.
The vitamin E analog alpha-tocopheryl succinate (alpha-TOS) can induce apoptosis. We show that the proapoptotic activity of alpha-TOS in hematopoietic and cancer cell lines involves inhibition of protein kinase C (PKC), since phorbol myristyl acetate prevented alpha-TOS-triggered apoptosis. More selective effectors indicated that alpha-TOS reduced PKCalpha isotype activity by increasing protein phosphatase 2A (PP2A) activity. The role of PKCalpha inhibition in alpha-TOS-induced apoptosis was confirmed using antisense oligonucleotides or PKCalpha overexpression. Gain- or loss-of-function bcl-2 mutants implied modulation of bcl-2 activity by PKC/PP2A as a mitochondrial target of alpha-TOS-induced proapoptotic signals. Structural analogs revealed that alpha-tocopheryl and succinyl moieties are both required for maximizing these effects. In mice with colon cancer xenografts, alpha-TOS suppressed tumor growth by 80%. This epitomizes cancer cell killing by a pharmacologically relevant compound without known side effects.  相似文献   

3.
4.
Gene amplification and protein overexpression of erbB2 (Her2/neu) has been observed in approximately 20–30% of breast cancers. ErbB2-positive breast cancer is tend to be more aggressive than other types of breast cancer and therefore further investigation on the signaling pathways of erbB2 is needed for the therapeutic target for breast cancer treatment. Here we report that microRNA-205 (miR-205), a molecule also reported to be associated with breast cancer, is negatively regulated by erbB2 overexpression. Breast epithelial cells exogenously overexpressed with erbB2 decreased the expression of miR-205, whereas increased the expression of cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6). The decreased expression of miR-205 slightly increased by the transfection of erbB2 siRNA into the erbB2-overexpressing breast cancer epithelial cells. Overexpression of erbB2 enabled breast epithelial cells to grow anchorage-independently in soft agar, and the transfection of the precursor of miR-205 into the cells leaded to the decrease in the ability to grow in soft agar. These results suggest that down-regulation of miR-205 in erbB2-overexpressing breast epithelial cells is essential for erbB2-induced tumorigenesis, and miR-205 may have the potential to be a novel important alternative therapeutic target for erbB2-positive breast cancer.  相似文献   

5.
The anti-diabetic drug metformin reduces human cancer incidence and improves the survival of cancer patients, including those with breast cancer. We studied the activity of metformin against diverse molecular subtypes of breast cancer cell lines in vitro. Metformin showed biological activity against all estrogen receptor (ER) positive and negative, erbB2 normal and abnormal breast cancer cell lines tested. It inhibited cellular proliferation, reduced colony formation and caused partial cell cycle arrest at the G1 checkpoint. Metformin did not induce apoptosis (as measured by DNA fragmentation and PARP cleavage) in luminal A, B or erbB2 subtype breast cancer cell lines. At the molecular level, metformin treatment was associated with a reduction of cyclin D1 and E2F1 expression with no changes in p27kip1 or p21waf1. It inhibited mitogen activated protein kinase (MAPK) and Akt activity, as well as the mammalian target of rapamycin (mTOR) in both ER positive and negative, erbB2-overexpressing and erbB2-normal expressing breast cancer cells. In erbB2-overexpressing breast cancer cell lines, metformin reduced erbB2 expression at higher concentrations, and at lower concentrations within the therapeutic range, it inhibited erbB2 tyrosine kinase activity evidenced by a reduction of phosphorylated erbB2 (P-erbB2) at both auto- and Src- phosphorylation sites. These data suggest that metformin may have potential therapeutic utility against ER positive and negative, erbB2-overexpressing and erbB2-normal expressing breast cancer cells.  相似文献   

6.
Alpha-tocopheryl succinate (alpha-TOS), a redox-inactive analog of vitamin E, induces cell cycle arrest, differentiation, and triggers apoptosis. We examined the ability of alpha-TOS to induce cytostasis and/or apoptosis in two human osteosarcoma cell lines, which carry wild-type pRb but differ in the p53 status. In the wt-p53 cells, alpha-TOS induced apoptosis, which was associated with p53 activation and enhanced E2F1 expression. Mutant p53 cells failed to undergo apoptosis when challenged with alpha-TOS. The cell growth arrest after alpha-TOS treatment was associated with a reduced expression of E2F1. Knocking down E2F1 rendered the alpha-TOS-sensitive cells rather resistant to the apoptotic stimulus inducing a marked and prolonged cell growth arrest. We conclude that alpha-TOS induces cell growth arrest or apoptosis involving E2F1.  相似文献   

7.
Alpha-tocopheryl succinate (alpha-TOS), a redox-silent analogue of vitamin E, induces apoptosis in multiple cell lines in a selective manner, by activating the intrinsic pathway. Since it is a highly hydrophobic compound, it may require a carrier protein for its trafficking to intracellular targets like mitochondria. We studied the role of the ubiquitous tocopherol-associated protein-1 (TAP1 or sec14-like 2) in apoptosis induction by alpha-TOS in malignant mesothelioma (MM) cells. Over-expression of TAP1 in MM cells sensitised them to apoptosis by low doses of alpha-TOS which were sub-apoptotic for the parental cells. Apoptosis induced in TAP1-over-expressing cells was mitochondria- and caspase-dependent, as suggested by dissipation of mitochondrial trans-membrane potential and inhibition by zVAD-fmk, respectively. Binding assays showed affinity of alpha-TOS for TAP1. Finally, TAP1 over-expressing cells accumulated alpha-TOS at higher levels compared to their normal counterparts. We suggest that TAP1 may act as an intracellular shuttle for alpha-TOS, promoting apoptosis initiated by this vitamin E analogue, as shown here for MM cells.  相似文献   

8.
We have shown that erbB2 altered breast cancer cells are less sensitive to the anti-proliferative effects of metformin than triple negative cells, and have described the differences of molecular mechanisms of metformin action by tumor subtypes. We hypothesized that metformin may be more effective against trastuzumab-resistant erbB2-overexpressing breast cancer cells because it targets the critical signaling pathways that are altered with resistance. BT474, SKBR3 and derived trastuzumab-resistant sublines BT474-HR20 (HR20) and SKBR3-pool2 (pool2) were used to test this hypothesis. Metformin treatment resulted in significantly more inhibition of proliferation and clonogenicity in resistant sublines. It decreased erbB2/insulin-like growth factor-1 receptor (IGF-1R) complexes (present only in the resistant sublines) without altering erbB2 expression, and reduced the expression and activity of erbB3 and IGF-1R in the trastuzumab-resistant but not parental cells. Trastuzumab-resistant sublines were resistant to rapamycin induced changes in mTOR activity and cell growth. In contrast, both BT474 and HR20 cells were highly sensitive to inhibitors of Src (Dasatinib) and PI-3K (LY294002). The pool2 cells showed higher sensitivity than SKBR3 cells to LY294002, but not Dasatinib. On the basis of these data, metformin appears to be significantly more effective against trastuzumab-resistant as compared to sensitive breast cancer cells. Metformin disrupts erbB2/IGF-1R complexes, erbB3 and IGF-1R expression and activity, as well as Src kinase and/or PI-3K/Akt signaling. This action appears to be independent of mTOR signaling. Our findings provide a rationale to study the effects of metformin on patients with erbB2 positive tumors treated with trastuzumab, with or without resistance.  相似文献   

9.
10.
细胞凋亡过程中c-erbB-2基因的表达   总被引:5,自引:2,他引:3  
据文献报道c-erbB-2可以介导细胞凋亡,为检验这一结论是否具有普遍性,用5-氟尿嘧啶(5-Fu)诱导小鼠成纤维细胞NC3H10,TC3H10及人乳腺癌细胞MCF-7的凋亡.用Northern印迹法检测c-erbB-2的表达状况.结果显示:c-erbB-2基因表达在5-Fu作用6h开始降低,12h降低更为明显.作用24~48h出现细胞存活率下降,DNA梯状断裂及细胞周期凋亡峰等凋亡典型现象.实验结果并不支持c-erbB-2可介导细胞凋亡的观点.该基因在细胞凋亡过程中有何作用尚待探讨.  相似文献   

11.
Benzyl isothiocyanate (BITC), a dietary cancer chemopreventive agent, causes apoptosis in MDA-MB-231 and MCF-7 human breast cancer cells, but the mechanism of cell death is not fully understood. We now demonstrate that the BITC-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species (ROS) due to inhibition of complex III of the mitochondrial respiratory chain. The BITC-induced ROS production and apoptosis were significantly inhibited by overexpression of catalase and Cu,Zn-superoxide dismutase and pharmacological inhibition of the mitochondrial respiratory chain. The mitochondrial DNA-deficient Rho-0 variant of MDA-MB-231 cells was nearly completely resistant to BITC-mediated ROS generation and apoptosis. The Rho-0 MDA-MB-231 cells also resisted BITC-mediated mitochondrial translocation (activation) of Bax. Biochemical assays revealed inhibition of complex III activity in BITC-treated MDA-MB-231 cells as early as at 1 h of treatment. The BITC treatment caused activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which function upstream of Bax activation in apoptotic response to various stimuli. Pharmacological inhibition of both JNK and p38 MAPK conferred partial yet significant protection against BITC-induced apoptosis. Activation of JNK and p38 MAPK resulting from BITC exposure was abolished by overexpression of catalase. The BITC-mediated conformational change of Bax was markedly suppressed by ectopic expression of catalytically inactive mutant of JNK kinase 2 (JNKK2(AA)). Interestingly, a normal human mammary epithelial cell line was resistant to BITC-mediated ROS generation, JNK/p38 MAPK activation, and apoptosis. In conclusion, the present study indicates that the BITC-induced apoptosis in human breast cancer cells is initiated by mitochondria-derived ROS.  相似文献   

12.
13.
Freeman RE  Neuzil J 《FEBS letters》2006,580(11):2671-2676
Malignant mesothelioma (MM) is a fatal type of cancer. We studied the role of the redox-active protein thioredoxin-1 (Trx-1) in apoptosis induced in MM cells and their non-malignant counterparts (Met-5A) by alpha-tocopheryl succinate (alpha-TOS) and TNF-related apoptosis-inducing ligand (TRAIL). MM cells were susceptible to alpha-TOS and less to TRAIL, while Met-5A cells were susceptible to TRAIL and resistant to alpha-TOS. MM cells expressed very low level of the Trx-1 protein, which was high in Met-5A cells, while the level of Trx-1 mRNA was similar in all cell lines. Downregulation of Trx-1 further sensitised Met-5A cells to TRAIL but not to alpha-TOS. Our data suggest that the role of Trx-1 in apoptosis modulation is unrelated to its anti-oxidant properties.  相似文献   

14.
Cardamonin (CD), a naturally occurring chalcone isolated from large black cardamom, was previously reported to suppress the proliferation of breast cancer cells. However, its precise molecular anti‐tumor mechanisms have not been well elucidated. In this study, we found that CD markedly inhibited the proliferation of MDA‐MB 231 and MCF‐7 breast cancer cells through the induction of G2/M arrest and apoptosis. Reactive oxygen species (ROS) plays a pivotal role in the inhibition of CD‐induced cell proliferation. Treatment with N‐acetyl‐cysteine (NAC), an ROS scavenger, blocked CD‐induced G2/M arrest and apoptosis in this study. Quenching of ROS by overexpression of catalase also blocked CD‐induced cell cycle arrest and apoptosis. We showed that CD enhanced the expression and nuclear translocation of Forkhead box O3 (FOXO3a) via upstream c‐Jun N‐terminal kinase, inducing the expression of FOXO3a and its target genes, including p21, p27, and Bim. This process led to the reduction of cyclin D1 and enhancement of activated caspase‐3 expression. The addition of NAC markedly reversed these effects, knockdown of FOXO3a using small interfering RNA also decreased CD‐induced G2/M arrest and apoptosis. In vivo, CD efficiently suppressed the growth of MDA‐MB 231 breast cancer xenograft tumors. Taken together, our data provide a molecular mechanistic rationale for CD‐induced cell cycle arrest and apoptosis in breast cancer cells.  相似文献   

15.
Overexpression of the receptor tyrosine kinase erbB2 (Her2 in humans) is correlated with a poor prognosis in breast and ovarian cancers. Treatment with trastuzumab (a monoclonal antibody against erbB2) improves survival; however, it also causes cardiomyopathy. We hypothesized that blockade of the erbB2 receptor induces cardiomyocyte death through a mitochondrial pathway that is dependent on the production of reactive oxygen species (ROS). We first showed that levels of erbB2 receptor are significantly decreased in an animal model of ischemic heart disease and in human ischemic cardiomyopathy. We treated neonatal rat cardiomyocytes with an inhibitory erbB2 antibody to study the mechanism behind the deleterious effects of erbB2 blockade. These cells displayed a dose-dependent increase in ROS production and cell death compared with control IgG-treated cells; these processes were reversed by the antioxidant, N-acetylcysteine. The effects of erbB2 antibody on both cell death and ROS production were also reversed by cyclosporine A and diazoxide, chemicals that regulate the pro- and anti-apoptotic channels in the mitochondria, respectively. Furthermore, mouse embryonic fibroblasts lacking Bax and Bak (proteins that mediate cell death through a mitochondrial pathway) were resistant to the deleterious effects of erbB2 antibody. These effects of erbB2 blockade appear to occur through a pathway involving AKT and PKC-α. Our results suggest that erbB2 plays a role in cardiomyocyte survival, and that the deleterious effects of trastuzumab on the heart occur through a mitochondrial pathway and is mediated by ROS production. Manipulation of redox signaling may be beneficial in cancer patients receiving trastuzumab.The Her-2/neu oncogene, also known as erbB2 in nonhuman organisms, is a transmembrane receptor tyrosine kinase that belongs to the epidermal growth factor receptor family (1, 2). Overexpression of Her2 is seen in ∼30% of breast cancer patients and is associated with poor survival, increased metastasis, and resistance to chemotherapy (35). Transgenic mice overexpressing erbB2 develop focal mammary tumors, thus implicating this protein in tumorigenesis (6). Trastuzumab (Herceptin, Genentech, CA) is a monoclonal antibody (Ab)2 that binds to Her2 with high affinity and improves survival of patients with advanced breast cancer (7). Trastuzumab is clinically efficacious both as a single agent or in combination with standard chemotherapy regimens (46). However, this agent is cardiotoxic on its own, and especially when administered with anthracyclines, where it can cause cardiomyopathy (CM) in up to 27% of patients (8).The importance of erbB2 in normal cardiac development and physiology was demonstrated in mice by cardiac-specific knock-out of erbB2 (9, 10). The mice were initially normal, but developed CM as adults. One study demonstrated no difference between the wild-type and knock-out mice in the degree of cardiac cell death as assessed by TUNEL staining (10). However, in another study that used a more sensitive PCR-based DNA fragmentation assay increased DNA fragmentation was reported in the hearts of erbB2-knock-out animals (9). Recently, Grazette et al. (11) studied the effects of erbB2 blockade on cardiomyocyte survival, and showed that erbB2 antibody (erbB2-Ab) caused a loss of mitochondrial membrane potential and an increase in cell death.The mechanism for the deleterious effects of erbB2 blockade remains unclear, but a recent report showed that activation of erbB2 reduces doxorubicin-induced oxidative stress in cardiomyocytes (12). Therefore, we hypothesized that erbB2-Ab-induced cell death in cardiomyocytes is a mitochondrial dependent process that involves ROS production. In this report, we show that erbB2 levels are decreased in an animal model of myocardial ischemia and in patients with ischemic CM. We then demonstrate that erbB2 blockade in cardiomyocytes leads to ROS production, and that the antioxidant N-acetylcysteine (NAC) protects against the damage induced by erbB2-Ab. We also find that erbB2 signaling in cardiomyocytes occurs through a mitochondrial, AKT-, and PKCα-dependent pathway. Moreover, the deleterious effects caused by the loss of erbB2 function require the pro-apoptotic proteins Bax and Bak. Finally, by using an erbB2-specific siRNA, we demonstrate that the effects of erbB2 blockade evolve from the specific inhibition of the erbB2 pathway rather than through nonspecific effects of the antibody. Together, our results suggest that erbB2 blockade increases ROS through a mitochondrial pathway.  相似文献   

16.

Background

The HER3 receptor functions as a major cause of drug resistance in cancer treatment. It is believed that therapeutic targeting of HER3 is required to improve patient outcomes. It is not clear whether a novel strategy with two functional cooperative miRNAs would effectively inhibit erbB3 expression and potentiate the anti-proliferative/anti-survival effects of a HER2-targeted therapy (trastuzumab) and chemotherapy (paclitaxel) on HER2-overexpressing breast cancer cells.

Results

Combination of miR-125a and miR-205, as compared to either miRNA alone, potently inhibited expression of HER3 in HER2-overexpressing breast cancer BT474 cells. Co-expression of the two miRNAs not only reduced the levels of phosphorylated erbB3 (P-erbB3), Akt (P-Akt), and Src (P-Src), it also inhibited cell proliferation and increased cells at G1 phase. A multi-miRNA lentiviral vector - the cluster of miR-125a and miR-205 - was constructed to simultaneously express the two miRNAs in HER2-overexpressing breast cancer cells. Concurrent expression of miR-125a and miR-205 via the miRNA cluster transfection significantly enhanced trastuzumab-mediated growth inhibition and cell cycle G1 arrest in BT474 cells and markedly increased paclitaxel-induced apoptosis in another HER2-overexpressing breast cancer cell line HCC1954.

Conclusions

Here, we showed that functional cooperative miRNAs effectively suppressed erbB3 expression. This novel approach targeting of HER3 was able to enhance the therapeutic efficacy of trastuzumab and paclitaxel against HER2-overexpressing breast cancer.
  相似文献   

17.
Neuzil J  Svensson I  Weber T  Weber C  Brunk UT 《FEBS letters》1999,445(2-3):295-300
Alpha-Tocopheryl succinate (alpha-TOS), but not a-tocopherol, triggered apoptosis in Jurkat T cells. Apoptosis was induced by alpha-TOS in a time- and concentration-dependent mode, and signs of apoptosis were visible at concentrations of alpha-TOS as low as 30 microM, and within 3-5 h after addition of the ester. Employing a specific fluorogenic substrate, caspase-3 was found to be activated rapidly in response to alpha-TOS at 50 microM. We also found that Jurkat T cells challenged with alpha-TOS, when exposed to the lysosomotropic weak base acridine orange, showed decreased lysosomal uptake of the dye. This is suggestive of the involvement of lysosomal destabilisation in apoptosis of the cells. Apoptosis of Jurkat T cells induced with alpha-TOS also involved a drop in the mitochondrial membrane potential, although this phenomenon occurred after the initiation of lysosomal rupture. All apoptotic features observed with alpha-TOS were very similar to those found when cross-linking of the Fas receptor triggered apoptosis. These findings are consistent with the recent idea that vitamin E can contribute to elimination of malignant cells by the induction of apoptosis, and can be of (patho)physiological significance.  相似文献   

18.
Modulation of oxidative stress in cancer cells plays an important role in the study of the resistance to anticancer therapies. Uncoupling protein 2 (UCP2) may play a dual role in cancer, acting as a protective mechanism in normal cells, while its overexpression in cancer cells could confer resistance to chemotherapy and a higher survival through downregulation of ROS production. Thus, our aim was to check whether the inhibition of UCP2 expression and function increases oxidative stress and could render breast cancer cells more sensitive to cisplatin (CDDP) or tamoxifen (TAM). For this purpose, we studied clonogenicity, mitochondrial membrane potential (ΔΨm), cell viability, ROS production, apoptosis, and autophagy in MCF-7 and T47D (only the last four determinations) breast cancer cells treated with CDDP or TAM, in combination or without a UCP2 knockdown (siRNA or genipin). Furthermore, survival curves were performed in order to check the impact of UCP2 expression in breast cancer patients. UCP2 inhibition and cytotoxic treatments produced a decrease in cell viability and clonogenicity, in addition to an increase in ΔΨm, ROS production, apoptosis, and autophagy. It is important to note that CDDP decreased UCP2 protein levels, so that the greatest effects produced by the UCP2 inhibition in combination with a cytotoxic treatment, with regard to treatment alone, were observed in TAM+UCP2siRNA-treated cells. Moreover, this UCP2 inhibition caused autophagic cell death, since apoptosis parameters barely increased after UCP2 knockdown. Finally, survival curves revealed that higher UCP2 expression corresponded with a poorer prognosis. In conclusion, UCP2 could be a therapeutic target in breast cancer, especially in those patients treated with tamoxifen.  相似文献   

19.
《Autophagy》2013,9(11):1643-1656
Lysosome-associated membrane protein type 2A (LAMP2A) is a key protein in the chaperone-mediated autophagy (CMA) pathway. LAMP2A helps in lysosomal uptake of modified and oxidatively damaged proteins directly into the lumen of lysosomes for degradation and protein turnover. Elevated expression of LAMP2A was observed in breast tumor tissues of all patients under investigation, suggesting a survival mechanism via CMA and LAMP2A. Reduced expression of the CMA substrates, GAPDH and PKM, was observed in most of the breast tumor tissues when compared with the normal adjacent tissues. Reactive oxygen species (ROS) mediated oxidative stress damages regulatory cellular components such as DNA, proteins and/or lipids. Protein carbonyl content (PCC) is widely used as a measure of total protein oxidation in cells. Ectopic expression of LAMP2A reduces PCC and thereby promotes cell survival during oxidative stress. Furthermore, inhibition of LAMP2A stimulates accumulation of GAPDH, AKT1 phosphorylation, generation of ROS, and induction of cellular apoptosis in breast cancer cells. Doxorubicin, which is a chemotherapeutic drug, often becomes ineffective against tumor cells with time due to chemotherapeutic resistance. Breast cancer cells deficient of LAMP2A demonstrate increased sensitivity to the drug. Thus, inhibiting CMA activity in breast tumor cells can be exploited as a potential therapeutic application in the treatment of breast cancer.  相似文献   

20.
Tapas Saha 《Autophagy》2012,8(11):1643-1656
Lysosome-associated membrane protein type 2A (LAMP2A) is a key protein in the chaperone-mediated autophagy (CMA) pathway. LAMP2A helps in lysosomal uptake of modified and oxidatively damaged proteins directly into the lumen of lysosomes for degradation and protein turnover. Elevated expression of LAMP2A was observed in breast tumor tissues of all patients under investigation, suggesting a survival mechanism via CMA and LAMP2A. Reduced expression of the CMA substrates, GAPDH and PKM, was observed in most of the breast tumor tissues when compared with the normal adjacent tissues. Reactive oxygen species (ROS) mediated oxidative stress damages regulatory cellular components such as DNA, proteins and/or lipids. Protein carbonyl content (PCC) is widely used as a measure of total protein oxidation in cells. Ectopic expression of LAMP2A reduces PCC and thereby promotes cell survival during oxidative stress. Furthermore, inhibition of LAMP2A stimulates accumulation of GAPDH, AKT1 phosphorylation, generation of ROS, and induction of cellular apoptosis in breast cancer cells. Doxorubicin, which is a chemotherapeutic drug, often becomes ineffective against tumor cells with time due to chemotherapeutic resistance. Breast cancer cells deficient of LAMP2A demonstrate increased sensitivity to the drug. Thus, inhibiting CMA activity in breast tumor cells can be exploited as a potential therapeutic application in the treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号