首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA library from freshly isolated mesophyll protoplasts of Nicotiana sylvestris was differentially screened using cDNAs from leaves, leaf strips submitted to the same stress as protoplasts during the isolation procedure, and cell suspension cultures. One of the selected clones (6P2) was found to encode a putative polypeptide highly homologous to previously characterized 3-hydroxy-3-methylglutaryl coenzyme A reductases. The C-terminal region of the polypeptide was highly conserved whereas its N-terminal region including the trans-membrane domains and the linker was more variable. Apart from protoplasts, the 6P2 gene was found to be expressed in apexes, anthers, roots, and in stressed leaf strips after 24h of culture, during the hypersensitive reaction to viral infection and after HgCl2 treatment. This pattern of expression is consistent with a role in plant defence mechanisms.  相似文献   

2.
Summary Male sterile plants appeared in the progeny of three fertile plants obtained after one cycle of protoplast culture from a fertile botanical line and two androgenetic lines ofNicotiana sylvestris. These plants showed the same foliar and floral abnormalities as the cytoplasmic male sterile (cms) mitochondrial variants obtained after two cycles of culture. We show that male sterility in these plants is controlled by three independent nuclear genes,ms1, ms2 andms3, while no changes can be seen in the mitochondrial genome. However, differences were found between thein organello mitochondrial protein synthesis patterns of male sterile and parent plants. Two reproducible changes were observed: the presence of a new 20 kDa polypeptide and the absence of a 40 kDa one. Such variations were described previously in mitochondrial protein synthesis patterns of the cms lines. Fertile hybrids of male sterile plants showed normal synthesis patterns. The male sterile plants are thus mutated in nuclear genes involved in changes observed in mitochondrial protein synthesis patterns.  相似文献   

3.
4.
5.
Two catalase genes,cat1 andcat2, have been isolated from the castor bean genome. They were located in the same direction on a chromosome at a distance of 2.4 kb,cat1 being on the downstream side ofcat2. The two genes contained introns at the same positions except that one of the 7 introns incat1 is missing incat2 and the corresponding introns differed in size and sequence between the two genes. The translated regions of the two genes had the same number of nucleotides and exhibited 81.3% nucleotide sequence identity. In addition to introns, the nucleotide sequences of the 5-and 3-flanking regions are highly divergent between the two genes. In etiolated seedlings,cat1 mRNA was present abundantly in endosperms and cotyledons and only in a small amount in roots. Thecat1 mRNA could not be detected in hypocotyls. By contrast,cat2 mRNA is most abundant in hypocotyls and roots, while endosperms and cotyledons contained only low levels ofcat2 mRNA. Although neithercat1 norcat2 mRNA could be detected in dry seeds, both mRNAs showed temporal accumulation in the endosperm in response to germination. These results suggest that expression of two tightly linked catalase genes of castor bean,cat1 andcat2, are differentially regulated during development.  相似文献   

6.
Summary The SR180 cell line has been isolated in a callus culture derived from a haploid Nicotiana sylvestris (n = X = 12) plant by its ability to proliferate on a selective medium containing 2,000 g/ml streptomycin sulphate. From the cell line diploid plants have been regenerated. The SR180 selfs are resistant to streptomycin. Streptomycin sensitivity in F1, and a 31 (sensitive to resistant) segregation in F2 indicate that resistance in the SR180 mutant is the result of a recessive Mendelian mutation.  相似文献   

7.
Summary Nicotiana sylvestris cell lines resistant to the amino acid analogues S-2-aminoethyl-cysteine (AECR), or 5-methyl-tryptophan (5MTR), were isolated in suspension culture. Assuming these resistances to be dominant, we have attempted to determine if such variant cell lines can be used to select double resistant somatic cell hybrids. A total of 1.8 × 104 control calli from mixed AECR and 5MTR protoplasts, and AECR and 5MTR homokaryotic fusions were placed on double analogue selection, but none survived. Eight somatic hybrid calli (0.8%), able to grow without inhibition on the double analogue selection medium, were obtained after AECR + 5MTR protoplast fusion. These were further determined as hybrids on the basis of resistance level, chromosome number, and chlorophyll content, all characteristics differing in the parental cell lines.This study is part of a dissertation by D.W.R.W. in partial fulfillment of the requirements for the Ph. D. degree at the University of Florida  相似文献   

8.
A cDNA clone (6PExt 1.2) encoding a novel extensin was isolated from a cDNA library made from 6 h old mesophyll protoplasts of Nicotiana sylvestris. The screening was performed with a heterologous probe from carrot. The encoded polypeptide showed features characteristic of hydroxyproline-rich glycoproteins such as Ser-(Pro)4 repeats and a high content in Tyr and Lys residues. The presence of four Tyr-X-Tyr-Lys motifs suggests the possibility for intramolecular isodityrosine cross-links whereas three Val-Tyr-Lys motifs may participate in intermolecular cross-links. The analysis of genomic DNA gel blots using both the N. sylvestris and the carrot clones as probes showed that the 6PExt 1.2 gene belongs to a complex multigene family encoding extensin and extensin-related polypeptides in N. sylvestris as well as in related Nicotianeae including a laboratory hybrid. This was confirmed by the analysis of RNA gel blots: a set of mRNAs ranging in size from 0.3 kb to 3.5 kb was found by the carrot extensin probe. The 6PExt 1.2 probe found a 1.2 kb mRNA in protoplasts and in wounded tissues as well as a 0.9 kb mRNA which seemed to be stem-specific. The gene encoding 6PExt 1.2 was induced by wounding in protoplasts, in leaf strips and after Agrobacterium tumefaciens infection of stems.  相似文献   

9.
The PSI-D subunit is the ferredoxin-binding site of photosystem I, and is encoded by the nuclear genepsaD. We isolated apsaD genomic clone fromNicotiana sylvestris, by screening a genomic library with apsaD cDNA which we previously cloned fromN. sylvestris (Yamamotoet al., Plant Mol Biol 17: 1251, 1991). Nucleotide sequence analysis revealed that this genomic clone contains apsaD gene, which does not correspond to thepsaD cDNA, so we designated these genespsaDb andpsaDa, respectively. ThepsaDb clone encodes a protein of 214 amino acids uninterrupted by introns. The N-terminal sequence determined for theN. sylvestris PSI-D protein encoded bypsaDb begins at the 49th residue. The products ofpsaDa andpsaDb share 82.7% and 79.5% identity at the amino acid and nucleotide levels, respectively. Genomic Southern analysis showed that two copies ofpsaD are present in theN. sylvestris genome. Ribonuclease protection assays and immunoblot analysis inN. sylvestris indicate that both genes are expressed in leaves, stems and flower buds, but neither is expressed in roots. During leaf development, the ratio ofpsaDb topsaDa mRNA increases from 0.12 in leaf buds to 0.36 in mature leaves. The relative abundance of the corresponding proteins decreased over the same developmental period. These results indicate that differential regulation mechanisms controlpsaDa andpsaDb expression at both the mRNA and protein levels during leaf development.  相似文献   

10.
To test the influence of a Nicotiana tomentosiformis repetitive sequence (R8.3) on transgene expression in N. sylvestris and in N. sylvestris-N. tomentosiformis hybrids, the R8.3 sequence was placed upstream of a nopaline synthase promoter (NOSpro)-NPTII reporter gene in a T-DNA construct. A number of transgenic N. sylvestris lines were produced and in most, the NPTII gene was expressed. In one line, however, the NPTII gene became silenced and methylated in the NOSpro region. The silenced locus was able to trans-inactivate and induce methylation of two stably expressed transgene loci comprising a similar construct. Nucleotide sequence analyses of the three transgene loci revealed that they each contained a single incomplete copy of the T-DNA, which had sustained deletions of varying sizes in the R8.3 region. Paradoxically, the R8.3 DNA upstream of the two active, unmethylated NOSpro-NPTII genes was highly methylated, whereas the R8.3 DNA upstream of the silenced, methylated NOSpro-NPTII gene was less methylated. The methylated portions of the R8.3 sequence corresponded to retroelement remnants. An active NOSpro-NPTII gene downstream of a nearly intact R8.3 sequence did not become methylated in N. sylvestris-N. tomentosiformis hybrids. Thus, methylation in the R8.3 sequence did not spread into adjoining transgene promoters and the effect of the R8.3 dispersed repeat family on transgene expression was negligible. The silencing phenomena observed with the three single-copy transgene loci are discussed in the context of other possible triggers of silencing.  相似文献   

11.
Summary Trisomies of primary trisomic line B220 of Nicotiana sylvestris, which contain an extra chromosome shown to be a satellite chromosome, can be readily identified by their larger flower and leaf sizes. In seed-propagated species, the low transmission of the extra chromosome has prevented such plants from becoming agriculturally useful cultivars. In line B220, the transfer of the extra chromosome in 2n×2n+1 crosses was very low (13.5%), although n and n + 1 pollen grains were produced in equal quantities, as was confirmed by anther culture. This was due to the delayed development of n + 1 pollen grains, which are not at full maturity at the time of an thesis. The transfer of the extra chromosome in 2n×2n+1 crosses was increased by a 1 day delay in pollination and also by pollination of small pollen grains selected through nylon meshes. The delayed pollination increased the frequency of trisomics by 9%, whereas pollen selected by using 30 and 25 n nylon meshes induced an extremely high transfer of the extra chromosome, namely 51.9% and 70.4%, respectively. The observed frequencies of trisomics and tetrasomics in artificial selfing of 2n+1 plants with selected small pollen grains were lower than those expected from the data of reciprocal crosses between 2n and 2n+1 plants. This discrepancy seems to indicate a disadvantage of the n+1 pollen in fertilization due to the longer style of the trisomics relative to that of the diploids.  相似文献   

12.
A cDNA library from freshly isolated protoplasts was differentially screened using cDNAs from mesophyll cells, stressed leaf strips and cell suspension cultures. One of the selected clones, 6P229, turned out to encode a putative polypeptide showing homology to the btuE periplasmic protein of Escherichia coli and to animal selenium-dependent glutathione peroxidases. A major difference was that the putative selenocysteine in the active site was not encoded by the termination codon TGA. The 6P229 gene was found to be expressed in germinating seeds, in apex and in flowers, as well as in stressed tissues. This pattern of expression would be consistent with a key role in cellular metabolism such as defense against oxidative stresses.  相似文献   

13.
14.
15.
Summary Two S-(2-aminoethyl)L-cysteine (AEC) resistant lines were isolated by screening mutagenized protoplasts from diploid N. sylvestris plants. Both lines accumulated free lysine at levels 10 to 20-fold higher than in controls. Lysine overproduction and AEC-resistance were also expressed in plants regenerated from the variant cultures. A feedback insensitive form of dihydrodipicolinate synthase (DHPS), the pathway specific control enzyme for lysine synthesis, was detected in callus cultures and leaf extracts from the resistant lines. Aspartate kinase (AK), the other key enzyme in the regulation of lysine biosynthesis, was unaltered in the mutants. Crosses with wild type plants indicated that the mutation conferring insensitivity to feedback in DHPS, with as result overproduction of lysine and resistance to AEC, was inherited as a single dominant nuclear gene.Abbreviations AK aspartate kinase (EC 2.7.2.4) - DHPS dihydrodipicolinate synthase (EC 4.2.1.52) - AEC S-(2-aminoethyl)L-cysteine  相似文献   

16.
Summary The polarity of a growing pollen tube is clearly reflected by a distinct zonation of the cytoplasmic content. The vegetative nucleus and the generative cell (GC) are located in the tip region of the tube, and the basal cytoplasmic portion is highly vacuolated. Using pollen tubes ofNicotiana sylvestris Spegazz. & Comes grown in vitro, we examined the effects of varying concentrations of the microtubule inhibitors colchicine and propham. The depolymerization of the cortical microtubules by 25 M colchicine led to a disorganization of the cytoplasm, i.e., vacuolization of the tip region, and to a deranged position of both the vegetative nucleus and the generative cell. The same concentration of colchicine inhibited tube growth by 10–20% of the control. Mitosis of the GC was not affected. Only from concentrations of 200 M the configuration of the GC's microtubules was altered and an inhibition of mitosis was observed. At this concentration the disorganization of the cytoplasm was always reversible, but neither inhibition of mitosis nor derangement of the nuclear positioning was. At 1,800 M colchicine, pollen tube growth was inhibited by 50% of the control. Using propham, the same three steps of action were observed, although propham proved to be about a hundred times more effective than colchicine. We conclude that the cortical microtubules of the pollen tube are involved in maintaining cellular polarity, probably as a part of a heterogeneous cytoskeletal network including also microfilaments and membranous elements. Nuclear positioning seems to be dependent on both, the tube's cortical and the GC's microtubules. A possible involvement of the extracellular matrix in maintaining intracytoplasmic polarity is suggested.Abbreviations DAPI 4,6-diamidino-2-phenylindole - EGTA ethyleneglycol-bis-(aminoethyl ether) tetraacetic acid - GC generative cell - MF microfilament - MT microtubule - PEM-buffer 50 mM PIPES, 1 mM EGTA, 2 mM MgSO4, pH 6.9 - PBS phosphate buffered saline - PIPES piperazine-bis-ethanesulphonic acid - PTG-test pollen tube growth test - VN vegetative nucleus Dedicated to Professor Peter Sitte on the occasion of his 65th birthday  相似文献   

17.
18.
A highly efficient and synchronousin vitro tuberization system is described. One-node stem pieces from potato (Solanum tuberosum cv. Bintje) plants grown under short day-light conditions containing an axillary bud were cultured in the dark on a tuber-inducing medium. After 5 or 6 days all axillary buds started to develop tubers. To study gene expression during tuber development, RNA isolated from tuberizing axillary buds was used for bothin vitro translation and northern blot hybridizations. The genes encoding the proteinase inhibitors I and II (PI-I and PI-II), a Kunitz-and a Bowman-Birk-type proteinase inhibitor were already expressed in uninduced axillary buds. The length of the day-light conditions differently influenced the expression level of the individual genes. In addition, the expression of each of these genes changed specifically during the development of the axillary bud to tuber. In contrast to the expression of these proteinase inhibitor genes, patatin gene expression was only detectable from the day tuberization was manifested as a radial expansion of the axillary bud.These results are discussed with respect to the regulation of the expression of the genes studied in relation to the regulation of tuber development.  相似文献   

19.
Glutathione peroxidases (GPXs) are a group of enzymes that protect cells against oxidative damage generated by reactive oxygen species (ROS). The presence of GPXs in plants has been reported by several groups, but the roles of individual members of this family in a single plant species have not been studied. A family of seven related proteins named AtGPX1- AtGPX7 in Arabidopsis was identified, and the genomic organization of this family was reported. The putative subcellular localizations of the encoded proteins are the cytosol, chloroplast, mitochondria, and endoplasmic reticulum. Expressed sequence tags (ESTs) for all the genes except AtGPX7 were identified. Expression analysis of AtGPX genes in Arabidopsis tissues was performed, and different patterns were detected. Interestingly, several genes were up-regulated coordinately in response to abiotic stresses. AtGPX6, like human phospholipid hydroperoxide GPX (PHGPX), possibly encodes mitochondrial and cytosolic isoforms by alternative initiation. In addition, this gene showed the strongest responses under most abiotic stresses tested. AtGPX6::GUS analysis in transgenic Arabidopsis showed that AtGPX6 is highly expressed throughout development in most tissues, thus supporting an important role for this gene in protection against oxidative damage. The different effects of salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and auxin on the expression of the genes indicate that the AtGPX family is regulated by multiple signaling pathways. Analysis of the upstream region of the AtGPX genes revealed the presence of multiple conserved motifs, and some of them resembled antioxidant-responsive elements found in plant and human promoters. The potential regulatory role of specific sequences is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号