首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4+CD8+ thymocytes are either positively selected and subsequently mature to CD4 single positive (SP) or CD8 SP T cells, or they die by apoptosis due to neglect or negative selection. This clonal selection is essential for establishing a functional self-restricted T cell repertoire. Intracellular signals through the three known mitogen-activated protein (MAP) kinase pathways have been shown to selectively guide positive or negative selection. Whereas the c-Jun N-terminal kinase and p38 MAP kinase regulate negative selection of thymocytes, the extracellular signal-regulated kinase (ERK) pathway is required for positive selection and T cell lineage commitment. In this paper, we show that the MAP/ERK kinase (MEK)-ERK pathway is also involved in negative selection. Thymocytes from newborn TCR transgenic mice were cultured with TCR/CD3epsilon-specific Abs or TCR-specific agonist peptides to induce negative selection. In the presence of the MEK-specific pharmacological inhibitors PD98059 or UO126, cell recovery was enhanced and deletion of DP thymocytes was drastically reduced. Furthermore, development of CD4 SP T cells was blocked, but differentiation of mature CD8 SP T cells proceeded in the presence of agonist peptides when MEK activity was blocked. Thus, our data indicate that the outcome between positively and negatively selecting signals is critically dependent on MEK activity.  相似文献   

2.
CTLA-4, a homologue of CD28, is a negative regulator of T cell activation in the periphery and is transiently expressed on the cell surface after T cell activation. However, the role of CTLA-4 in T cell activation in the thymus is not clear. This investigation was initiated to determine the role of CTLA-4 in the activation of CD4(+)CD8(+) double-positive (DP) and CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) thymocytes using fetal thymic organ cultures (FTOC) of MHC class II-restricted, OVA(323-339)-restricted TCR transgenic mice (DO11.10). We found that treatment of the FTOC with anti-CTLA-4-blocking Ab during activation with OVA(323-339) increased the proportion and number of DP thymocytes, but decreased the proportion and number of SP thymocytes compared with OVA(323-339)-stimulated FTOC without anti-CTLA-4 Ab treatment. In addition, anti-CTLA-4 Ab treatment inhibited OVA(323-339)-induced expression of the early activation marker, CD69, in DP thymocytes, but increased CD69 in SP thymocytes. Similarly, CTLA-4 blockage decreased phosphorylation of ERK in DP thymocytes by Ag-specific TCR engagement, but increased phosphorylation of ERK in SP thymocytes. CTLA-4 blockage inhibited deletion of DP thymocytes treated with a high dose of OVA(323-339), whereas CTLA-4 blockage did not inhibit deletion of DP thymocytes treated with a low dose of OVA(323-339). We conclude that CTLA-4 positively regulates the activation of DP thymocytes, resulting in their deletion, whereas blocking CTLA-4 suppresses the activation of DP thymocytes, leading to inhibition of DP thymocyte deletion. In contrast, CTLA-4 negatively regulates the activation of SP thymocytes.  相似文献   

3.
The differentiation of double-positive (DP) CD4(+)CD8(+) thymocytes to single-positive CD4(+) or CD8(+) T cells is regulated by signals that are initiated by coengagement of the Ag (TCR) and costimulatory receptors. CD28 costimulatory receptors, which augment differentiation and antiapoptotic responses in mature T lymphocytes, have been reported to stimulate both differentiation and apoptotic responses in TCR-activated DP thymocytes. We have used artificial APCs that express ligands for TCR and CD28 to show that CD28 signals increase expression of CD69, Bim, and cell death in TCR-activated DP thymocytes but do not costimulate DP thymocytes to initiate the differentiation program. The lack of a differentiation response is not due to defects in CD28-initiated TCR proximal signaling events but by a selective defect in the activation of ERK MAPK. To characterize signals needed to initiate the death response, a mutational analysis was performed on the CD28 cytoplasmic domain. Although mutation of all of CD28 cytoplasmic domain signaling motifs blocks cell death, the presence of any single motif is able to signal a death response. Thus, there is functional redundancy in the CD28 cytoplasmic domain signaling motifs that initiate the thymocyte death response. In contrast, immobilized Abs can initiate differentiation responses and cell death in DP thymocytes. However, because Ab-mediated differentiation occurs through CD28 receptors with no cytoplasmic domain, the response may be mediated by increased adhesion to immobilized anti-TCR Abs.  相似文献   

4.
Positive selection of developing thymocytes is initiated at the double-positive (DP) CD4(+)CD8(+) stage of their maturation. Accordingly, expression of a human CD4 (hCD4) transgene beginning at the DP stage has been shown to restore normal T cell development and function in CD4-deficient mice. However, it is unclear whether later onset CD4 expression would still allow such a restoration. To investigate this issue, we used transgenic mice in which a hCD4 transgene is not expressed on DP, but only on single-positive cells. By crossing these animals with CD4-deficient mice, we show that late hCD4 expression supports the maturation of T cell precursors and the peripheral export of mature TCRalphabeta(+) CD8(-) T cells. These results were confirmed in two different MHC class II-restricted TCR transgenic mice. T cells arising by this process were functional in the periphery because they responded to agonist peptide in vivo. Interestingly, thymocytes of these mice appeared refractory to peptide-induced negative selection. Together, these results indicate that the effect of CD4 on positive selection of class II-restricted T cells extends surprisingly late into the maturation process by a previously unrecognized pathway of differentiation, which might contribute to the generation of autoreactive T cells.  相似文献   

5.
6.
It is generally accepted that the avidity of TCR for self Ag/MHC determines the fate of immature thymocytes. However, the contribution of the quantity of TCR signal to T cell selection has not been well established, particularly in vivo. To address this issue, we analyzed DO-TCR transgenic CD3zeta-deficient (DO-Tg/zetaKO) mice in which T cells have a reduced TCR on the cell surface. In DO-Tg/zetaKO mice, very few CD4 single positive (SP) thymocytes developed, indicating that the decrease in TCR signaling resulted in a failure of positive selection of DO-Tg thymocytes. Administration of the peptide Ag to DO-Tg/zetaKO mice resulted in the generation of functional CD4 SP mature thymocytes in a dose-dependent manner, and, unexpectedly, DO-Tg CD8 SP cells emerged at lower doses of Ag. TCR signal-dependent, sequential commitment from CD8(+) SP to CD4(+) SP was also shown in a class I-restricted TCR-Tg system. These in vivo analyses demonstrate that the quantity of TCR signal directly determines positive and negative selection, and further suggest that weak signal directs positively selected T cells to CD8 lineage and stronger signal to CD4 lineage.  相似文献   

7.
Although the thymic microenvironment provides the necessary elements for T-cell differentiation, the precise role of individual components remains to be determined. In this paper, attempts were made to address the possibility that CD4 or CD8 single-positive (SP) thymocytes could be developed from immature CD4+CD8+ (double-positive; DP) thymocytes in a suspension culture in the presence of soluble factors. We observed that IL-4 and IFN-gamma weakly induced DP cells to differentiate to CD4 cells, but not to CD8. In contrast, IL-2 weakly induced differentiation to CD8. Interestingly, Con A sup strongly induced differentiation to CD8 SP from the purified DP thymocytes prepared from C57BL/6 or LCMV TCRtg mice. In particular, it was found that thymocyte culture with Con A sup generated CD69+DP cells, and the CD69+DP differentiated to CD8 SP under the suspension culture with soluble factors. Thus, Con A sup or combinations of IL-2, IL-4 and IL-7 strongly induced differentiation of CD69+DP to CD8 SP, whereas individual cytokines did not. These results suggest that soluble factors like cytokines play an important role in the generation of SP thymocytes in the absence of thymic stromal cells, at least from a distinctive subpopulation like CD69+DP thymocytes, and perhaps from those of broader range when in conjunction with TCR/MHC interaction.  相似文献   

8.
We studied the functional role of Fas (CD95) in thymic T cell development using the TCR transgenic mice homozygous for the lpr mutation, DO10 lpr/lpr mice. In DO10 lpr/lpr mice, the differentiation of CD4(+)CD8(+) double-positive (DP) thymocytes to CD4(+) single-positive (SP) thymocytes was markedly impaired, as indicated by decreased generation of CD4(+) SP thymocytes and reduced ratio of CD4(+) SP thymocytes to DP thymocytes in lpr/lpr mice compared with those of +/+ mice. Activation of DP thymocytes in the process of positive selection was also significantly inhibited in DO10 lpr/lpr mice, as shown by the lower levels of CD69 expression on DP thymocytes in lpr/lpr mice compared to +/+ mice. Furthermore, the deletion of DP thymocytes induced by in vivo administration of OVA peptide (up to 150 micrograms) and anti-TCR clonotype mAb did not occur in DO10 lpr/lpr mice, whereas these treatments significantly decreased DP thymocytes in DO10 +/+ mice. On the other hand, no significant difference in DO10 transgenic TCR expression on DP thymocytes was found between DO10 lpr/lpr and +/+ mice. Together, these results indicate that Fas is importantly involved in both positive and negative selection of thymocytes.  相似文献   

9.
The identification of factors that regulate the proliferation and differentiation of double-positive (DP) into CD4(+) and CD8(+) single-positive (SP) thymocytes has proven difficult due to the inability of DP thymocytes to proliferate, expand, and differentiate into SP thymocytes in available cell culture media. Here we report on the ability of DP thymocytes to differentiate in a novel conditioned medium, termed XLCM, derived from the supernatant of mitogen activated human cord blood mononuclear cells. During a 5-day culture in XLCM in the absence of thymic stromal cells, DP thymocytes from normal mice and MHC double knockout mice (lack SP thymocytes) proliferate, expand, and differentiate into several (alphabetaTCR(+), NK1.1(+)alphabetaTCR(+), and gammadeltaTCR(+)) subsets of CD4(+) and predominantly CD8(+) SP thymocytes. These studies suggest that the use of XLCM may aid in the characterization of factors that regulate the differentiation of DP thymocytes into CD8(+) SP thymocytes.  相似文献   

10.
TCR-mediated stimulation induces activation and proliferation of mature T cells. When accompanied by signals through the costimulatory receptor CD28, TCR signals also result in the recruitment of cholesterol- and glycosphingolipid-rich membrane microdomains (lipid rafts), which are known to contain several molecules important for T cell signaling. Interestingly, immature CD4(+)CD8(+) thymocytes respond to TCR/CD28 costimulation not by proliferating, but by dying. In this study, we report that, although CD4(+)CD8(+) thymocytes polarize their actin cytoskeleton, they fail to recruit lipid rafts to the site of TCR/CD28 costimulation. We show that coupling of lipid raft mobilization to cytoskeletal reorganization can be mediated by phosphoinositide 3-kinase, and discuss the relevance of these findings to the interpretation of TCR signals by immature vs mature T cells.  相似文献   

11.
Expression of the T‐cell receptor (TCR):CD3 complex is tightly regulated during T‐cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ε proline‐rich sequence, Lck, c‐Cbl, and SLAP, which collectively trigger the dynamin‐dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ‐monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T‐cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T‐cell development.  相似文献   

12.
alphabeta T cell development in the thymus is dependent on signaling through the TCR. The first of these signals is mediated by the pre-TCR, which is responsible for promoting pre-T cell proliferation and the differentiation of CD4(-)8(-)3(-) (DN) thymocytes into CD4(+)8(+)3(+) (DP) cells. In many cases, T cell signaling proteins known to be essential for TCR signaling in mature T cells are also required for pre-TCR signaling in DN thymocytes. Therefore, it came as a surprise to discover that mice lacking the Tec kinases Itk and Rlk, enzymes required for efficient activation of phospholipase C-gamma1 in mature T cells, showed no obvious defects in pre-TCR-dependent selection events in the thymus. In this report, we demonstrate that DN thymocytes lacking Itk, or Itk and Rlk, are impaired in their ability to generate normal numbers of DP thymocytes, especially when placed in direct competition with WT DN thymocytes. We also show that Itk is required for maximal pre-TCR signaling in DN thymocytes. These data demonstrate that the Tec kinases Itk and Rlk are involved in, but are not essential for, pre-TCR signaling in the thymus, suggesting that there is an alternative mechanism for activating phospholipase C-gamma1 in DN thymocytes that is not operating in DP thymocytes and mature T cells.  相似文献   

13.
Growth factor-dependent gut intraepithelial lymphocyte (IEL) cell lines were established from a long-term in vitro culture of BALB/c IEL with syngeneic irradiated spleen cells in the presence of concanavalin A-stimulated spleen supernatant fluids. The cell lines were preferentially consisted of very limited thymoindependent subsets of IEL; i.e., Thy-1+ CD5TCRαβ+ CD4+CD8 α+β (double-positive; DP) IEL and Thy-1+ CD5 TCRαβ+ CD4CD8α+β (CD8 single-positive; CD8 SP) IEL. The CD8 SP IEL cell line had cytotoxic activities and was triggered to proliferate by T-cell receptor (TCR)-directed stimuli. The DP IEL cell line expressed high levels of the CD3-TCRαβ, exhibited cytotoxic activity in redirected lysis assays, and had perforin in the cytoplasm, indicating the functional maturity of this cell line. However, the DP IEL cell line did not proliferate in response to TCRαβ-directed stimuli, which indicated that TCRαβ-mediated signalling was able to initiate cytotoxic function but not to induce proliferation of the DP IEL cell line. Although both cell lines were shown to have functional competence, they expressed J11d antigen which marks immaturity in thymocyte differentiation pathways. These results indicate that the established thymoindependent DP and CD8 SP IEL cell lines have unique properties distinct from DP thymocytes and CD8 SP peripheral T cells. Together with a recent report on freshly isolated DP IEL (10), the unique properties of the DP IEL cell line seems to support the notion that DP IEL may undergo a unique maturation process in the gut microenvironment.  相似文献   

14.
Peptide specificity of thymic selection of CD4+CD25+ T cells.   总被引:21,自引:0,他引:21  
The CD4(+)CD25(+) regulatory T cells can be found in the thymus, but their need to undergo positive and negative selection has been questioned. Instead, it has been hypothesized that CD4(+)CD25(+) cells mature following TCR binding to MHC backbone, to low abundant MHC/peptide complexes, or to class II MHC loaded with peripheral autoantigens. In all these circumstances, processes that are distinct from positive and negative selection would govern the provenance of CD4(+)CD25(+) cells in the thymus. By comparing the development of CD4(+)CD25(-) and CD4(+)CD25(+) cells in mice expressing class II MHC molecules bound with one or many peptide(s), we show that the CD4(+)CD25(+) cells appear during natural selection of CD4(+) T cells. The proportion of CD4(+)CD25(+) cells in the population of CD4(+) thymocytes remains constant, and their total number reflects the complexity of selecting class II MHC/peptide complexes. Hence, thymic development of CD4(+)CD25(+) cells does not exclusively depend on the low-density, high-affinity MHC/peptide complexes or thymic presentation of peripheral self-Ags, but, rather, these cells are selected as a portion of the natural repertoire of CD4(+) T cells. Furthermore, while resistant to deletion mediated by endogenous superantigen(s), these cells were negatively selected on class II MHC/peptide complexes. We postulate that while the CD4(+)CD25(+) thymocytes are first detectable in the thymic medulla, their functional commitment occurs in the thymic cortex.  相似文献   

15.
A CD4(+)CD8(+) double-positive thymocyte cell line, 257-20-109 was established from BALB/c mice thymocytes and used to analyze the requirements to induce CD4 or CD8 single-positive (SP) T cells. CD4SP cells were induced from 257-20-109 cells by anti-CD3 stimulation in the presence of the FcR-positive macrophage cell line, P388D1. During stimulation, maturation events, such as the down-regulation of CD24 and the up-regulation of CD69, H-2D(d), CD5, and Bcl-2, were recognized. Furthermore, these CD4SP cells appeared to be functional because the cells produced IL-2 and IL-4 when activated with phorbol ester and calcium ionophore. In contrast, CD8SP cells could be induced by stimulation with fixed anti-CD3 after removal of stimulation. To investigate the extent of signals required for CD4SP and CD8SP, the cells stimulated under either condition for 2 days were sorted and transferred to different culture conditions. These results suggested that the fate of lineage commitment was determined within 2 days, and that CD4 lineage commitment required longer activation. Furthermore, the experiments with subclones of 257-20-109 demonstrated that the lower density of CD3 did not shift the cells from CD4SP to CD8SP, but only reduced the amount of CD4SP cells. In contrast, when the 257-20-109 cells were stimulated by the combination of fixed anti-CD3 and anti-CD28, the majority of the cells shifted to CD4SP, with an enhancement of extracellular signal-regulated kinase 1 phosphorylation. Our results indicate that the signals via TCR/CD3 alone shifted the double-positive cells to CD8SP cells, but the reinforced signals via TCR/CD3 and costimulator could commit the cells to CD4SP.  相似文献   

16.
During thymic development, T cell progenitors undergo positive selection based on the ability of their T cell Ag receptors (TCR) to bind MHC ligands on thymic epithelial cells. Positive selection determines T cell fate, in that thymocytes whose TCR bind MHC class I (MHC-I) develop as CD8-lineage T cells, whereas those that bind MHC class II (MHC-II) develop as CD4 T cells. Positive selection also induces migration from the cortex to the medulla driven by the chemokine receptor CCR7. In this study, we show that CCR7 is up-regulated in a larger proportion of CD4(+)CD8(+) thymocytes undergoing positive selection on MHC-I compared with MHC-II. Mice bearing a mutation of Th-POK, a key CD4/CD8-lineage regulator, display increased expression of CCR7 among MHC-II-specific CD4(+)CD8(+) thymocytes. In addition, overexpression of CCR7 results in increased development of CD8 T cells bearing MHC-II-specific TCR. These findings suggest that the timing of CCR7 expression relative to coreceptor down-regulation is regulated by lineage commitment signals.  相似文献   

17.
18.
Immature double-positive (DP) thymocytes mature into CD4(+)CD8(-) cells in response to coengagement of TCR with any of a variety of cell surface "coinducer" receptors, including CD2. In contrast, DP thymocytes are signaled to undergo apoptosis by coengagement of TCR with CD28 costimulatory receptors, but the molecular basis for DP thymocyte apoptosis by TCR plus CD28 coengagement is not known. In the present study, we report that TCR plus CD28 coengagement does not invariably induce DP thymocyte apoptosis but, depending on the intensity of CD28 costimulation, can induce DP thymocyte maturation. We demonstrate that distinct but interacting signal transduction pathways mediate DP thymocyte maturation signals and DP thymocyte apoptotic signals. Specifically, DP maturation signals are transduced by the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and up-regulate expression of the antiapoptotic protein Bcl-2. In contrast, the apoptotic response stimulated by CD28 costimulatory signals is mediated by ERK/MAPK-independent pathways. Importantly, when TCR-activated thymocytes are simultaneously coengaged by both CD28 and CD2 receptors, CD28 signals can inhibit ERK/MAPK-dependent Bcl-2 protein up-regulation. Thus, there is cross-talk between the signal transduction pathways that transduce apoptotic and maturation responses, enabling CD28-initiated signal transduction pathways to both stimulate DP thymocyte apoptosis and also negatively regulate maturation responses initiated by TCR plus CD2 coengagement.  相似文献   

19.
20.
Chow KP  Qiu JT  Lee JM  Hsu SL  Yang SC  Wu NN  Huang W  Wu TS 《PloS one》2012,7(3):e33152
Peripheral CD8(+) T cells are defective in both IL-15 and IL-15Rα knock-out (KO) mice; however, whether IL-15/IL-15Rα deficiency has a similar effect on CD8 single-positive (SP) thymocytes remains unclear. In this study, we investigated whether the absence of IL-15 transpresentation in IL-15Rα KO mice results in a defect in thymic CD8 single positive (SP) TCR(hi) thymocytes. Comparison of CD8SP TCR(hi) thymocytes from IL-15Rα KO mice with their wild type (WT) counterparts by flow cytometry showed a significant reduction in the percentage of CD69(-) CD8SP TCR(hi) thymocytes, which represent thymic premigrants. In addition, analysis of in vivo 5-bromo-2-deoxyuridine (BrdU) incorporation demonstrated that premigrant expansion of CD8SP TCR(hi) thymocytes was reduced in IL-15Rα KO mice. The presence of IL-15 transpresentation-dependent expansion in CD8SP TCR(hi) thymocytes was assessed by culturing total thymocytes in IL-15Rα-Fc fusion protein-pre-bound plates that were pre-incubated with IL-15 to mimic IL-15 transpresentation in vitro. The results demonstrated that CD8SP thymocytes selectively outgrew other thymic subsets. The contribution of the newly divided CD8SP thymocytes to the peripheral CD8(+) T cell pool was examined using double labeling with intrathymically injected FITC and intravenously injected BrdU. A marked decrease in FITC(+) BrdU(+) CD8(+) T cells was observed in the IL-15Rα KO lymph nodes. Through these experiments, we identified an IL-15 transpresentation-dependent proliferation process selective for the mature CD8SP premigrant subpopulation. Importantly, this process may contribute to the maintenance of the normal peripheral CD8(+) T cell pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号