首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gloor GB  Martin LC  Wahl LM  Dunn SD 《Biochemistry》2005,44(19):7156-7165
Information theory was used to identify nonconserved coevolving positions in multiple sequence alignments from a variety of protein families. Coevolving positions in these alignments fall into two general categories. One set is composed of positions that coevolve with only one or two other positions. These positions often display direct amino acid side-chain interactions with their coevolving partner. The other set comprises positions that coevolve with many others and are frequently located in regions critical for protein function, such as active sites and surfaces involved in intermolecular interactions and recognition. We find that coevolving positions are more likely to change protein function when mutated than are positions showing little coevolution. These results imply that information theory may be applied generally to find coevolving, nonconserved positions that are part of functional sites in uncharacterized protein families. We propose that these coevolving positions compose an important subset of the positions in an alignment, and may be as important to the structure and function of the protein family as are highly conserved positions.  相似文献   

2.
Intraprotein side chain contacts can couple the evolutionary process of amino acid substitution at one position to that at another. This coupling, known as residue coevolution, may vary in strength. Conserved contacts thus not only define 3-dimensional protein structure, but also indicate which residue-residue interactions are crucial to a protein's function. Therefore, prediction of strongly coevolving residue-pairs helps clarify molecular mechanisms underlying function. Previously, various coevolution detectors have been employed separately to predict these pairs purely from multiple sequence alignments, while disregarding available structural information. This study introduces an integrative framework that improves the accuracy of such predictions, relative to previous approaches, by combining multiple coevolution detectors and incorporating structural contact information. This framework is applied to the ABC-B and ABC-C transporter families, which include the drug exporter P-glycoprotein involved in multidrug resistance of cancer cells, as well as the CFTR chloride channel linked to cystic fibrosis disease. The predicted coevolving pairs are further analyzed based on conformational changes inferred from outward- and inward-facing transporter structures. The analysis suggests that some pairs coevolved to directly regulate conformational changes of the alternating-access transport mechanism, while others to stabilize rigid-body-like components of the protein structure. Moreover, some identified pairs correspond to residues previously implicated in cystic fibrosis.  相似文献   

3.
4.

Background

While the conserved positions of a multiple sequence alignment (MSA) are clearly of interest, non-conserved positions can also be important because, for example, destabilizing effects at one position can be compensated by stabilizing effects at another position. Different methods have been developed to recognize the evolutionary relationship between amino acid sites, and to disentangle functional/structural dependencies from historical/phylogenetic ones.

Methodology/Principal Findings

We have used two complementary approaches to test the efficacy of these methods. In the first approach, we have used a new program, MSAvolve, for the in silico evolution of MSAs, which records a detailed history of all covarying positions, and builds a global coevolution matrix as the accumulated sum of individual matrices for the positions forced to co-vary, the recombinant coevolution, and the stochastic coevolution. We have simulated over 1600 MSAs for 8 protein families, which reflect sequences of different sizes and proteins with widely different functions. The calculated coevolution matrices were compared with the coevolution matrices obtained for the same evolved MSAs with different coevolution detection methods. In a second approach we have evaluated the capacity of the different methods to predict close contacts in the representative X-ray structures of an additional 150 protein families using only experimental MSAs.

Conclusions/Significance

Methods based on the identification of global correlations between pairs were found to be generally superior to methods based only on local correlations in their capacity to identify coevolving residues using either simulated or experimental MSAs. However, the significant variability in the performance of different methods with different proteins suggests that the simulation of MSAs that replicate the statistical properties of the experimental MSA can be a valuable tool to identify the coevolution detection method that is most effective in each case.  相似文献   

5.
6.
Compensatory substitutions happen when one mutation is advantageously selected because it restores the loss of fitness induced by a previous deleterious mutation. How frequent such mutations occur in evolution and what is the structural and functional context permitting their emergence remain open questions. We built an atlas of intra-protein compensatory substitutions using a phylogenetic approach and a dataset of 1,630 bacterial protein families for which high-quality sequence alignments and experimentally derived protein structures were available. We identified more than 51,000 positions coevolving by the mean of predicted compensatory mutations. Using the evolutionary and structural properties of the analyzed positions, we demonstrate that compensatory mutations are scarce (typically only a few in the protein history) but widespread (the majority of proteins experienced at least one). Typical coevolving residues are evolving slowly, are located in the protein core outside secondary structure motifs, and are more often in contact than expected by chance, even after accounting for their evolutionary rate and solvent exposure. An exception to this general scheme is residues coevolving for charge compensation, which are evolving faster than noncoevolving sites, in contradiction with predictions from simple coevolutionary models, but similar to stem pairs in RNA. While sites with a significant pattern of coevolution by compensatory mutations are rare, the comparative analysis of hundreds of structures ultimately permits a better understanding of the link between the three-dimensional structure of a protein and its fitness landscape.  相似文献   

7.
Protein co-evolution under structural and functional constraints necessitates the preservation of important interactions. Identifying functionally important regions poses many obstacles in protein engineering efforts. In this paper, we present a bioinformatics-inspired approach (residue correlation analysis, RCA) for predicting functionally important domains from protein family sequence data. RCA is comprised of two major steps: (i) identifying pairs of residue positions that mutate in a coordinated manner, and (ii) using these results to identify protein regions that interact with an uncommonly high number of other residues. We hypothesize that strongly correlated pairs result not only from contacting pairs, but also from residues that participate in conformational changes involved during catalysis or important interactions necessary for retaining functionality. The results show that highly mobile loops that assist in ligand association/dissociation tend to exhibit high correlation. RCA results exhibit good agreement with the findings of experimental and molecular dynamics studies for the three protein families that are analyzed: (i) DHFR (dihydrofolate reductase), (ii) cyclophilin, and (iii) formyl-transferase. Specifically, the specificity (percentage of correct predictions) in all three cases is substantially higher than those obtained by entropic measures or contacting residue pairs. In addition, we use our approach in a predictive fashion to identify important regions of a transmembrane amino acid transporter protein for which there is limited structural and functional information available.  相似文献   

8.
The remarkable conservation of protein structure, compared with that of sequences, suggests that in the course of evolution, residue substitutions which tend to destabilize a particular structure must be compensated by other substitutions that confer greater stability on that structure. Several approaches have been designed to detect correlated changes in a set of homologous sequences. However, most of them do not take into account the phylogeny of the sequences, and it has been shown that their detection power is weak. It remains unclear whether coevolution could be a general process at the level of amino acids of proteins. In the present study, we analyze the phylogenetic reconstruction of 15 sets of homologous proteins to assess, under different conditions, whether a significant amount of coevolving sites can be detected. Two criteria are used to detect significantly cosubstituting sites. One criterion corresponds to that of Shindyalov, Kolchanov, and Sander. The second one is based on intensive simulations of evolution of protein sequences along a phylogeny to estimate the significance of the number of observed cosubstitutions for pairs of sites. Our results show an important sensitivity of the detection of cosubstituting sites to the model used for the phylogenetic reconstruction. Not considering the uncertainty associated with the reconstructed data might lead to detecting numerous false-positive pairs of sites. Finally, significant amounts of coevolving pairs could be found only when substitutions affecting the physicochemical properties of the amino acids were considered. Such results suggest evidence of a cosubstitution mechanism in protein evolution. However, the identification of nonambiguous coevolving sites is still unresolved.  相似文献   

9.
Correlated changes of nucleic or amino acids have provided strong information about the structures and interactions of molecules. Despite the rich literature in coevolutionary sequence analysis, previous methods often have to trade off between generality, simplicity, phylogenetic information, and specific knowledge about interactions. Furthermore, despite the evidence of coevolution in selected protein families, a comprehensive screening of coevolution among all protein domains is still lacking. We propose an augmented continuous-time Markov process model for sequence coevolution. The model can handle different types of interactions, incorporate phylogenetic information and sequence substitution, has only one extra free parameter, and requires no knowledge about interaction rules. We employ this model to large-scale screenings on the entire protein domain database (Pfam). Strikingly, with 0.1 trillion tests executed, the majority of the inferred coevolving protein domains are functionally related, and the coevolving amino acid residues are spatially coupled. Moreover, many of the coevolving positions are located at functionally important sites of proteins/protein complexes, such as the subunit linkers of superoxide dismutase, the tRNA binding sites of ribosomes, the DNA binding region of RNA polymerase, and the active and ligand binding sites of various enzymes. The results suggest sequence coevolution manifests structural and functional constraints of proteins. The intricate relations between sequence coevolution and various selective constraints are worth pursuing at a deeper level.  相似文献   

10.
Choulier L  Lafont V  Hugo N  Altschuh D 《Proteins》2000,41(4):475-484
A nonrestrictive method for identifying covariance in protein families is described and applied to human and mouse germline Vkappa and VH sequence alignments. Amino acids that occur at each position in a sequence alignment are divided into two sets, called a word, by generating all possible combinations of alternative amino acids. Each word is associated with a pattern of changes. Words with identical patterns identify covariant positions. In antibody variable domains, the number of words generated ranged between 1103 and 2195 depending on the alignment, of which 4 to 12 % occurred in covariant pairs. Despite the nonrestrictive character of pattern generation, covariant residues did not reflect a random selection with respect to the nature of amino acid changes and/or their spatial proximity in a reference crystallographic structure. This approach allowed the identification of a covariance signal for positions with high variability, mostly located in the outer part of the common structural framework of antibody variable domains. Covariance in these regions may reflect the existence of alternative and mutually exclusive atomic arrangements that are compatible with antibody function. The method may be of general applicability to rationalize residue variability in protein families.  相似文献   

11.
Coevolution between protein residues is normally interpreted as direct contact. However, the evolutionary record of a protein sequence contains rich information that may include long-range functional couplings, couplings that report on homo-oligomeric states or even conformational changes. Due to the complexity of the sequence space and the lack of structural information on various members of a protein family, it has been difficult to effectively mine the additional information encoded in a multiple sequence alignment (MSA). Here, taking advantage of the recent release of the AlphaFold (AF) database we attempt to identify coevolutionary couplings that cannot be explained simply by spatial proximity. We propose a simple computational method that performs direct coupling analysis on a MSA and searches for couplings that are not satisfied in any of the AF models of members of the identified protein family. Application of this method on 2012 protein families suggests that ~12% of the total identified coevolving residue pairs are spatially distant and more likely to be disordered than their contacting counterparts. We expect that this analysis will help improve the quality of coevolutionary distance restraints used for structure determination and will be useful in identifying potentially functional/allosteric cross-talk between distant residues.  相似文献   

12.
An improved understanding of protein conformational changes has broad implications for elucidating the mechanisms of various biological processes and for the design of protein engineering experiments. Understanding rearrangements of residue interactions is a key component in the challenge of describing structural transitions. Evolutionary properties of protein sequences and structures are extensively studied; however, evolution of protein motions, especially with respect to interaction rearrangements, has yet to be explored. Here, we investigated the relationship between sequence evolution and protein conformational changes and discovered that structural transitions are encoded in amino acid sequences as coevolving residue pairs. Furthermore, we found that highly coevolving residues are clustered in the flexible regions of proteins and facilitate structural transitions by forming and disrupting their interactions cooperatively. Our results provide insight into the evolution of protein conformational changes and help to identify residues important for structural transitions.  相似文献   

13.
The env gene of human immunodeficiency virus (HIV) is a functionally important gene responsible for the production of protein products (gp120 and gp41) involved in host cell recognition, binding, and entry. This occurs through a complex and, as yet, not fully understood process of protein-protein interaction and within and between protein functional communication. Exposure on the surface of active HIV virions means the gp120-gp41 complexes are subjected to intense immune system pressure and have, therefore, evolved mechanisms to avoid neutralization. Using protein-coding sequences representing all the HIV type-1 (HIV-1) group M subtypes, we have identified amino acids within the env gene whose evolution is inextricably linked over the entire HIV-1 group M epidemic. We identified 848 pairs of coevolving residues (involving 263 out of 764 amino acid sites), which represent 0.29% of all possible pairs. Of the coevolving pairs, 68% were significantly correlated by hydrophobicity, molecular weight, or both hydrophobicity and molecular weight. Subsequent grouping of coevolving pairs resulted in the identification of 290 groups of amino acid residues, with the size of these groups ranging from 2 to 10 amino acid residues. Many of these dependencies are correlated by function including CD4 binding, coreceptor binding, glycosylation, and protein-protein interaction. This analysis provides important information regarding the functional dependencies observed within all the HIV-1 group M subtypes and may assist in the identification of functional protein domains and therapeutic targets within the HIV-1 env gene.  相似文献   

14.
The maintenance of protein function and structure constrains the evolution of amino acid sequences. This fact can be exploited to interpret correlated mutations observed in a sequence family as an indication of probable physical contact in three dimensions. Here we present a simple and general method to analyze correlations in mutational behavior between different positions in a multiple sequence alignment. We then use these correlations to predict contact maps for each of 11 protein families and compare the result with the contacts determined by crystallography. For the most strongly correlated residue pairs predicted to be in contact, the prediction accuracy ranges from 37 to 68% and the improvement ratio relative to a random prediction from 1.4 to 5.1. Predicted contact maps can be used as input for the calculation of protein tertiary structure, either from sequence information alone or in combination with experimental information. © 1994 John Wiley & Sons, Inc.  相似文献   

15.

Background

Although the patterns of co-substitutions in RNA is now well characterized, detection of coevolving positions in proteins remains a difficult task. It has been recognized that the signal is typically weak, due to the fact that (i) amino-acid are characterized by various biochemical properties, so that distinct amino acids changes are not functionally equivalent, and (ii) a given mutation can be compensated by more than one mutation, at more than one position.

Results

We present a new method based on phylogenetic substitution mapping. The two above-mentioned problems are addressed by (i) the introduction of a weighted mapping, which accounts for the biochemical effects (volume, polarity, charge) of amino-acid changes, (ii) the use of a clustering approach to detect groups of coevolving sites of virtually any size, and (iii) the distinction between biochemical compensation and other coevolutionary mechanisms. We apply this methodology to a previously studied data set of bacterial ribosomal RNA, and to three protein data sets (myoglobin of vertebrates, S-locus Receptor Kinase and Methionine Amino-Peptidase).

Conclusion

We succeed in detecting groups of sites which significantly depart the null hypothesis of independence. Group sizes range from pairs to groups of size ? 10, depending on the substitution weights used. The structural and functional relevance of these groups of sites are assessed, and the various evolutionary processes potentially generating correlated substitution patterns are discussed.  相似文献   

16.
Fares MA  Travers SA 《Genetics》2006,173(1):9-23
Protein evolution depends on intramolecular coevolutionary networks whose complexity is proportional to the underlying functional and structural interactions among sites. Here we present a novel approach that vastly improves the sensitivity of previous methods for detecting coevolution through a weighted comparison of divergence between amino acid sites. The analysis of the HIV-1 Gag protein detected convergent adaptive coevolutionary events responsible for the selective variability emerging between subtypes. Coevolution analysis and functional data for heat-shock proteins, Hsp90 and GroEL, highlight that almost all detected coevolving sites are functionally or structurally important. The results support previous suggestions pinpointing the complex interdomain functional interactions within these proteins and we propose new amino acid sites as important for interdomain functional communication. Three-dimensional information sheds light on the functional and structural constraints governing the coevolution between sites. Our covariation analyses propose two types of coevolving sites in agreement with previous reports: pairs of sites spatially proximal, where compensatory mutations could maintain the local structure stability, and clusters of distant sites located in functional domains, suggesting a functional dependency between them. All sites detected under adaptive evolution in these proteins belong to coevolution groups, further underlining the importance of testing for coevolution in selective constraints analyses.  相似文献   

17.
MOTIVATION: A number of methods have been developed to predict functional specificity determinants in protein families based on sequence information. Most of these methods rely on pre-defined functional subgroups. Manual subgroup definition is difficult because of the limited number of experimentally characterized subfamilies with differing specificity, while automatic subgroup partitioning using computational tools is a non-trivial task and does not always yield ideal results. RESULTS: We propose a new approach SPEL (specificity positions by evolutionary likelihood) to detect positions that are likely to be functional specificity determinants. SPEL, which does not require subgroup definition, takes a multiple sequence alignment of a protein family as the only input, and assigns a P-value to every position in the alignment. Positions with low P-values are likely to be important for functional specificity. An evolutionary tree is reconstructed during the calculation, and P-value estimation is based on a random model that involves evolutionary simulations. Evolutionary log-likelihood is chosen as a measure of amino acid distribution at a position. To illustrate the performance of the method, we carried out a detailed analysis of two protein families (LacI/PurR and G protein alpha subunit), and compared our method with two existing methods (evolutionary trace and mutual information based). All three methods were also compared on a set of protein families with known ligand-bound structures. AVAILABILITY: SPEL is freely available for non-commercial use. Its pre-compiled versions for several platforms and alignments used in this work are available at ftp://iole.swmed.edu/pub/SPEL/  相似文献   

18.
19.
20.
Thiamine diphosphate-dependent decarboxylases catalyze both cleavage and formation of C C bonds in various reactions, which have been assigned to different homologous sequence families. This work compares 53 ThDP-dependent decarboxylases with known crystal structures. Both sequence and structural information were analyzed synergistically and data were analyzed for global and local properties by means of statistical approaches (principle component analysis and principal coordinate analysis) enabling complexity reduction. The different results obtained both locally and globally, that is, individual positions compared with the overall protein sequence or structure, revealed challenges in the assignment of separated homologous families. The methods applied herein support the comparison of enzyme families and the identification of functionally relevant positions. The findings for the family of ThDP-dependent decarboxylases underline that global sequence identity alone is not sufficient to distinguish enzyme function. Instead, local sequence similarity, defined by comparisons of structurally equivalent positions, allows for a better navigation within several groups of homologous enzymes. The differentiation between homologous sequences is further enhanced by taking structural information into account, such as BioGPS analysis of the active site properties or pairwise structural superimpositions. The methods applied herein are expected to be transferrable to other enzyme families, to facilitate family assignments for homologous protein sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号